Description: A set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashelne0d.1 | |- ( ph -> B e. A ) |
|
| hashelne0d.2 | |- ( ph -> A e. V ) |
||
| Assertion | hashelne0d | |- ( ph -> -. ( # ` A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashelne0d.1 | |- ( ph -> B e. A ) |
|
| 2 | hashelne0d.2 | |- ( ph -> A e. V ) |
|
| 3 | 1 | ne0d | |- ( ph -> A =/= (/) ) |
| 4 | 3 | neneqd | |- ( ph -> -. A = (/) ) |
| 5 | hasheq0 | |- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
|
| 6 | 2 5 | syl | |- ( ph -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 7 | 4 6 | mtbird | |- ( ph -> -. ( # ` A ) = 0 ) |