Metamath Proof Explorer


Theorem hashelne0d

Description: A set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hashelne0d.1
|- ( ph -> B e. A )
hashelne0d.2
|- ( ph -> A e. V )
Assertion hashelne0d
|- ( ph -> -. ( # ` A ) = 0 )

Proof

Step Hyp Ref Expression
1 hashelne0d.1
 |-  ( ph -> B e. A )
2 hashelne0d.2
 |-  ( ph -> A e. V )
3 1 ne0d
 |-  ( ph -> A =/= (/) )
4 3 neneqd
 |-  ( ph -> -. A = (/) )
5 hasheq0
 |-  ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) )
6 2 5 syl
 |-  ( ph -> ( ( # ` A ) = 0 <-> A = (/) ) )
7 4 6 mtbird
 |-  ( ph -> -. ( # ` A ) = 0 )