Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
hashsng |
|- ( (/) e. _V -> ( # ` { (/) } ) = 1 ) |
3 |
1 2
|
ax-mp |
|- ( # ` { (/) } ) = 1 |
4 |
3
|
eqcomi |
|- 1 = ( # ` { (/) } ) |
5 |
4
|
a1i |
|- ( A e. V -> 1 = ( # ` { (/) } ) ) |
6 |
5
|
eqeq2d |
|- ( A e. V -> ( ( # ` A ) = 1 <-> ( # ` A ) = ( # ` { (/) } ) ) ) |
7 |
|
simpr |
|- ( ( A e. V /\ ( # ` A ) = ( # ` { (/) } ) ) -> ( # ` A ) = ( # ` { (/) } ) ) |
8 |
|
1nn0 |
|- 1 e. NN0 |
9 |
3 8
|
eqeltri |
|- ( # ` { (/) } ) e. NN0 |
10 |
|
hashvnfin |
|- ( ( A e. V /\ ( # ` { (/) } ) e. NN0 ) -> ( ( # ` A ) = ( # ` { (/) } ) -> A e. Fin ) ) |
11 |
9 10
|
mpan2 |
|- ( A e. V -> ( ( # ` A ) = ( # ` { (/) } ) -> A e. Fin ) ) |
12 |
11
|
imp |
|- ( ( A e. V /\ ( # ` A ) = ( # ` { (/) } ) ) -> A e. Fin ) |
13 |
|
snfi |
|- { (/) } e. Fin |
14 |
|
hashen |
|- ( ( A e. Fin /\ { (/) } e. Fin ) -> ( ( # ` A ) = ( # ` { (/) } ) <-> A ~~ { (/) } ) ) |
15 |
12 13 14
|
sylancl |
|- ( ( A e. V /\ ( # ` A ) = ( # ` { (/) } ) ) -> ( ( # ` A ) = ( # ` { (/) } ) <-> A ~~ { (/) } ) ) |
16 |
7 15
|
mpbid |
|- ( ( A e. V /\ ( # ` A ) = ( # ` { (/) } ) ) -> A ~~ { (/) } ) |
17 |
16
|
ex |
|- ( A e. V -> ( ( # ` A ) = ( # ` { (/) } ) -> A ~~ { (/) } ) ) |
18 |
|
hasheni |
|- ( A ~~ { (/) } -> ( # ` A ) = ( # ` { (/) } ) ) |
19 |
17 18
|
impbid1 |
|- ( A e. V -> ( ( # ` A ) = ( # ` { (/) } ) <-> A ~~ { (/) } ) ) |
20 |
|
df1o2 |
|- 1o = { (/) } |
21 |
20
|
eqcomi |
|- { (/) } = 1o |
22 |
21
|
breq2i |
|- ( A ~~ { (/) } <-> A ~~ 1o ) |
23 |
22
|
a1i |
|- ( A e. V -> ( A ~~ { (/) } <-> A ~~ 1o ) ) |
24 |
6 19 23
|
3bitrd |
|- ( A e. V -> ( ( # ` A ) = 1 <-> A ~~ 1o ) ) |