Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A ~~ B /\ B e. Fin ) -> A ~~ B ) |
2 |
|
enfii |
|- ( ( B e. Fin /\ A ~~ B ) -> A e. Fin ) |
3 |
2
|
ancoms |
|- ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) |
4 |
|
hashen |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
5 |
3 4
|
sylancom |
|- ( ( A ~~ B /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) ) |
6 |
1 5
|
mpbird |
|- ( ( A ~~ B /\ B e. Fin ) -> ( # ` A ) = ( # ` B ) ) |
7 |
|
relen |
|- Rel ~~ |
8 |
7
|
brrelex1i |
|- ( A ~~ B -> A e. _V ) |
9 |
|
enfi |
|- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) ) |
10 |
9
|
notbid |
|- ( A ~~ B -> ( -. A e. Fin <-> -. B e. Fin ) ) |
11 |
10
|
biimpar |
|- ( ( A ~~ B /\ -. B e. Fin ) -> -. A e. Fin ) |
12 |
|
hashinf |
|- ( ( A e. _V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
13 |
8 11 12
|
syl2an2r |
|- ( ( A ~~ B /\ -. B e. Fin ) -> ( # ` A ) = +oo ) |
14 |
7
|
brrelex2i |
|- ( A ~~ B -> B e. _V ) |
15 |
|
hashinf |
|- ( ( B e. _V /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
16 |
14 15
|
sylan |
|- ( ( A ~~ B /\ -. B e. Fin ) -> ( # ` B ) = +oo ) |
17 |
13 16
|
eqtr4d |
|- ( ( A ~~ B /\ -. B e. Fin ) -> ( # ` A ) = ( # ` B ) ) |
18 |
6 17
|
pm2.61dan |
|- ( A ~~ B -> ( # ` A ) = ( # ` B ) ) |