| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pnfnre |
|- +oo e/ RR |
| 2 |
1
|
neli |
|- -. +oo e. RR |
| 3 |
|
hashinf |
|- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
| 4 |
3
|
eleq1d |
|- ( ( A e. V /\ -. A e. Fin ) -> ( ( # ` A ) e. RR <-> +oo e. RR ) ) |
| 5 |
2 4
|
mtbiri |
|- ( ( A e. V /\ -. A e. Fin ) -> -. ( # ` A ) e. RR ) |
| 6 |
|
id |
|- ( ( # ` A ) = 0 -> ( # ` A ) = 0 ) |
| 7 |
|
0re |
|- 0 e. RR |
| 8 |
6 7
|
eqeltrdi |
|- ( ( # ` A ) = 0 -> ( # ` A ) e. RR ) |
| 9 |
5 8
|
nsyl |
|- ( ( A e. V /\ -. A e. Fin ) -> -. ( # ` A ) = 0 ) |
| 10 |
|
id |
|- ( A = (/) -> A = (/) ) |
| 11 |
|
0fi |
|- (/) e. Fin |
| 12 |
10 11
|
eqeltrdi |
|- ( A = (/) -> A e. Fin ) |
| 13 |
12
|
con3i |
|- ( -. A e. Fin -> -. A = (/) ) |
| 14 |
13
|
adantl |
|- ( ( A e. V /\ -. A e. Fin ) -> -. A = (/) ) |
| 15 |
9 14
|
2falsed |
|- ( ( A e. V /\ -. A e. Fin ) -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 16 |
15
|
ex |
|- ( A e. V -> ( -. A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) ) |
| 17 |
|
hashen |
|- ( ( A e. Fin /\ (/) e. Fin ) -> ( ( # ` A ) = ( # ` (/) ) <-> A ~~ (/) ) ) |
| 18 |
11 17
|
mpan2 |
|- ( A e. Fin -> ( ( # ` A ) = ( # ` (/) ) <-> A ~~ (/) ) ) |
| 19 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
| 20 |
19
|
fveq2i |
|- ( # ` ( 1 ... 0 ) ) = ( # ` (/) ) |
| 21 |
|
0nn0 |
|- 0 e. NN0 |
| 22 |
|
hashfz1 |
|- ( 0 e. NN0 -> ( # ` ( 1 ... 0 ) ) = 0 ) |
| 23 |
21 22
|
ax-mp |
|- ( # ` ( 1 ... 0 ) ) = 0 |
| 24 |
20 23
|
eqtr3i |
|- ( # ` (/) ) = 0 |
| 25 |
24
|
eqeq2i |
|- ( ( # ` A ) = ( # ` (/) ) <-> ( # ` A ) = 0 ) |
| 26 |
|
en0 |
|- ( A ~~ (/) <-> A = (/) ) |
| 27 |
18 25 26
|
3bitr3g |
|- ( A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 28 |
16 27
|
pm2.61d2 |
|- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |