Metamath Proof Explorer


Theorem hasheqf1o

Description: The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017)

Ref Expression
Assertion hasheqf1o
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> E. f f : A -1-1-onto-> B ) )

Proof

Step Hyp Ref Expression
1 hashen
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> A ~~ B ) )
2 bren
 |-  ( A ~~ B <-> E. f f : A -1-1-onto-> B )
3 1 2 bitrdi
 |-  ( ( A e. Fin /\ B e. Fin ) -> ( ( # ` A ) = ( # ` B ) <-> E. f f : A -1-1-onto-> B ) )