Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by AV, 4-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hasheqf1od.a | |- ( ph -> A e. U ) |
|
| hasheqf1od.f | |- ( ph -> F : A -1-1-onto-> B ) |
||
| Assertion | hasheqf1od | |- ( ph -> ( # ` A ) = ( # ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hasheqf1od.a | |- ( ph -> A e. U ) |
|
| 2 | hasheqf1od.f | |- ( ph -> F : A -1-1-onto-> B ) |
|
| 3 | f1of | |- ( F : A -1-1-onto-> B -> F : A --> B ) |
|
| 4 | 2 3 | syl | |- ( ph -> F : A --> B ) |
| 5 | 4 1 | fexd | |- ( ph -> F e. _V ) |
| 6 | f1oeq1 | |- ( f = F -> ( f : A -1-1-onto-> B <-> F : A -1-1-onto-> B ) ) |
|
| 7 | 5 2 6 | spcedv | |- ( ph -> E. f f : A -1-1-onto-> B ) |
| 8 | hasheqf1oi | |- ( A e. U -> ( E. f f : A -1-1-onto-> B -> ( # ` A ) = ( # ` B ) ) ) |
|
| 9 | 1 7 8 | sylc | |- ( ph -> ( # ` A ) = ( # ` B ) ) |