Metamath Proof Explorer


Theorem hasheqf1od

Description: The size of two sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by AV, 4-May-2021)

Ref Expression
Hypotheses hasheqf1od.a
|- ( ph -> A e. U )
hasheqf1od.f
|- ( ph -> F : A -1-1-onto-> B )
Assertion hasheqf1od
|- ( ph -> ( # ` A ) = ( # ` B ) )

Proof

Step Hyp Ref Expression
1 hasheqf1od.a
 |-  ( ph -> A e. U )
2 hasheqf1od.f
 |-  ( ph -> F : A -1-1-onto-> B )
3 f1of
 |-  ( F : A -1-1-onto-> B -> F : A --> B )
4 2 3 syl
 |-  ( ph -> F : A --> B )
5 4 1 fexd
 |-  ( ph -> F e. _V )
6 f1oeq1
 |-  ( f = F -> ( f : A -1-1-onto-> B <-> F : A -1-1-onto-> B ) )
7 5 2 6 spcedv
 |-  ( ph -> E. f f : A -1-1-onto-> B )
8 hasheqf1oi
 |-  ( A e. U -> ( E. f f : A -1-1-onto-> B -> ( # ` A ) = ( # ` B ) ) )
9 1 7 8 sylc
 |-  ( ph -> ( # ` A ) = ( # ` B ) )