Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
|- ( F : A -1-1-> B -> F : A --> B ) |
2 |
1
|
anim2i |
|- ( ( A e. V /\ F : A -1-1-> B ) -> ( A e. V /\ F : A --> B ) ) |
3 |
2
|
ancomd |
|- ( ( A e. V /\ F : A -1-1-> B ) -> ( F : A --> B /\ A e. V ) ) |
4 |
|
fex |
|- ( ( F : A --> B /\ A e. V ) -> F e. _V ) |
5 |
3 4
|
syl |
|- ( ( A e. V /\ F : A -1-1-> B ) -> F e. _V ) |
6 |
|
f1o2ndf1 |
|- ( F : A -1-1-> B -> ( 2nd |` F ) : F -1-1-onto-> ran F ) |
7 |
|
df-2nd |
|- 2nd = ( x e. _V |-> U. ran { x } ) |
8 |
7
|
funmpt2 |
|- Fun 2nd |
9 |
|
resfunexg |
|- ( ( Fun 2nd /\ F e. _V ) -> ( 2nd |` F ) e. _V ) |
10 |
8 5 9
|
sylancr |
|- ( ( A e. V /\ F : A -1-1-> B ) -> ( 2nd |` F ) e. _V ) |
11 |
|
f1oeq1 |
|- ( ( 2nd |` F ) = f -> ( ( 2nd |` F ) : F -1-1-onto-> ran F <-> f : F -1-1-onto-> ran F ) ) |
12 |
11
|
biimpd |
|- ( ( 2nd |` F ) = f -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> f : F -1-1-onto-> ran F ) ) |
13 |
12
|
eqcoms |
|- ( f = ( 2nd |` F ) -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> f : F -1-1-onto-> ran F ) ) |
14 |
13
|
adantl |
|- ( ( ( A e. V /\ F : A -1-1-> B ) /\ f = ( 2nd |` F ) ) -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> f : F -1-1-onto-> ran F ) ) |
15 |
10 14
|
spcimedv |
|- ( ( A e. V /\ F : A -1-1-> B ) -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> E. f f : F -1-1-onto-> ran F ) ) |
16 |
15
|
ex |
|- ( A e. V -> ( F : A -1-1-> B -> ( ( 2nd |` F ) : F -1-1-onto-> ran F -> E. f f : F -1-1-onto-> ran F ) ) ) |
17 |
16
|
com13 |
|- ( ( 2nd |` F ) : F -1-1-onto-> ran F -> ( F : A -1-1-> B -> ( A e. V -> E. f f : F -1-1-onto-> ran F ) ) ) |
18 |
6 17
|
mpcom |
|- ( F : A -1-1-> B -> ( A e. V -> E. f f : F -1-1-onto-> ran F ) ) |
19 |
18
|
impcom |
|- ( ( A e. V /\ F : A -1-1-> B ) -> E. f f : F -1-1-onto-> ran F ) |
20 |
|
hasheqf1oi |
|- ( F e. _V -> ( E. f f : F -1-1-onto-> ran F -> ( # ` F ) = ( # ` ran F ) ) ) |
21 |
5 19 20
|
sylc |
|- ( ( A e. V /\ F : A -1-1-> B ) -> ( # ` F ) = ( # ` ran F ) ) |