| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashf1 |  |-  ( ( A e. Fin /\ A e. Fin ) -> ( # ` { f | f : A -1-1-> A } ) = ( ( ! ` ( # ` A ) ) x. ( ( # ` A ) _C ( # ` A ) ) ) ) | 
						
							| 2 | 1 | anidms |  |-  ( A e. Fin -> ( # ` { f | f : A -1-1-> A } ) = ( ( ! ` ( # ` A ) ) x. ( ( # ` A ) _C ( # ` A ) ) ) ) | 
						
							| 3 |  | enrefg |  |-  ( A e. Fin -> A ~~ A ) | 
						
							| 4 |  | f1finf1o |  |-  ( ( A ~~ A /\ A e. Fin ) -> ( f : A -1-1-> A <-> f : A -1-1-onto-> A ) ) | 
						
							| 5 | 3 4 | mpancom |  |-  ( A e. Fin -> ( f : A -1-1-> A <-> f : A -1-1-onto-> A ) ) | 
						
							| 6 | 5 | abbidv |  |-  ( A e. Fin -> { f | f : A -1-1-> A } = { f | f : A -1-1-onto-> A } ) | 
						
							| 7 | 6 | fveq2d |  |-  ( A e. Fin -> ( # ` { f | f : A -1-1-> A } ) = ( # ` { f | f : A -1-1-onto-> A } ) ) | 
						
							| 8 |  | hashcl |  |-  ( A e. Fin -> ( # ` A ) e. NN0 ) | 
						
							| 9 |  | bcnn |  |-  ( ( # ` A ) e. NN0 -> ( ( # ` A ) _C ( # ` A ) ) = 1 ) | 
						
							| 10 | 8 9 | syl |  |-  ( A e. Fin -> ( ( # ` A ) _C ( # ` A ) ) = 1 ) | 
						
							| 11 | 10 | oveq2d |  |-  ( A e. Fin -> ( ( ! ` ( # ` A ) ) x. ( ( # ` A ) _C ( # ` A ) ) ) = ( ( ! ` ( # ` A ) ) x. 1 ) ) | 
						
							| 12 | 8 | faccld |  |-  ( A e. Fin -> ( ! ` ( # ` A ) ) e. NN ) | 
						
							| 13 | 12 | nncnd |  |-  ( A e. Fin -> ( ! ` ( # ` A ) ) e. CC ) | 
						
							| 14 | 13 | mulridd |  |-  ( A e. Fin -> ( ( ! ` ( # ` A ) ) x. 1 ) = ( ! ` ( # ` A ) ) ) | 
						
							| 15 | 11 14 | eqtrd |  |-  ( A e. Fin -> ( ( ! ` ( # ` A ) ) x. ( ( # ` A ) _C ( # ` A ) ) ) = ( ! ` ( # ` A ) ) ) | 
						
							| 16 | 2 7 15 | 3eqtr3d |  |-  ( A e. Fin -> ( # ` { f | f : A -1-1-onto-> A } ) = ( ! ` ( # ` A ) ) ) |