Metamath Proof Explorer


Theorem hashfingrpnn

Description: A finite group has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hashfingrpnn.1
|- B = ( Base ` G )
hashfingrpnn.2
|- ( ph -> G e. Grp )
hashfingrpnn.3
|- ( ph -> B e. Fin )
Assertion hashfingrpnn
|- ( ph -> ( # ` B ) e. NN )

Proof

Step Hyp Ref Expression
1 hashfingrpnn.1
 |-  B = ( Base ` G )
2 hashfingrpnn.2
 |-  ( ph -> G e. Grp )
3 hashfingrpnn.3
 |-  ( ph -> B e. Fin )
4 2 grpmndd
 |-  ( ph -> G e. Mnd )
5 1 4 3 hashfinmndnn
 |-  ( ph -> ( # ` B ) e. NN )