Step |
Hyp |
Ref |
Expression |
1 |
|
hashfinmndnn.1 |
|- B = ( Base ` G ) |
2 |
|
hashfinmndnn.2 |
|- ( ph -> G e. Mnd ) |
3 |
|
hashfinmndnn.3 |
|- ( ph -> B e. Fin ) |
4 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
5 |
3 4
|
syl |
|- ( ph -> ( # ` B ) e. NN0 ) |
6 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
7 |
1 6
|
mndidcl |
|- ( G e. Mnd -> ( 0g ` G ) e. B ) |
8 |
2 7
|
syl |
|- ( ph -> ( 0g ` G ) e. B ) |
9 |
8 3
|
hashelne0d |
|- ( ph -> -. ( # ` B ) = 0 ) |
10 |
9
|
neqned |
|- ( ph -> ( # ` B ) =/= 0 ) |
11 |
|
elnnne0 |
|- ( ( # ` B ) e. NN <-> ( ( # ` B ) e. NN0 /\ ( # ` B ) =/= 0 ) ) |
12 |
5 10 11
|
sylanbrc |
|- ( ph -> ( # ` B ) e. NN ) |