| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashfinmndnn.1 |  |-  B = ( Base ` G ) | 
						
							| 2 |  | hashfinmndnn.2 |  |-  ( ph -> G e. Mnd ) | 
						
							| 3 |  | hashfinmndnn.3 |  |-  ( ph -> B e. Fin ) | 
						
							| 4 |  | hashcl |  |-  ( B e. Fin -> ( # ` B ) e. NN0 ) | 
						
							| 5 | 3 4 | syl |  |-  ( ph -> ( # ` B ) e. NN0 ) | 
						
							| 6 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 7 | 1 6 | mndidcl |  |-  ( G e. Mnd -> ( 0g ` G ) e. B ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> ( 0g ` G ) e. B ) | 
						
							| 9 | 8 3 | hashelne0d |  |-  ( ph -> -. ( # ` B ) = 0 ) | 
						
							| 10 | 9 | neqned |  |-  ( ph -> ( # ` B ) =/= 0 ) | 
						
							| 11 |  | elnnne0 |  |-  ( ( # ` B ) e. NN <-> ( ( # ` B ) e. NN0 /\ ( # ` B ) =/= 0 ) ) | 
						
							| 12 | 5 10 11 | sylanbrc |  |-  ( ph -> ( # ` B ) e. NN ) |