Metamath Proof Explorer


Theorem hashfinmndnn

Description: A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses hashfinmndnn.1
|- B = ( Base ` G )
hashfinmndnn.2
|- ( ph -> G e. Mnd )
hashfinmndnn.3
|- ( ph -> B e. Fin )
Assertion hashfinmndnn
|- ( ph -> ( # ` B ) e. NN )

Proof

Step Hyp Ref Expression
1 hashfinmndnn.1
 |-  B = ( Base ` G )
2 hashfinmndnn.2
 |-  ( ph -> G e. Mnd )
3 hashfinmndnn.3
 |-  ( ph -> B e. Fin )
4 hashcl
 |-  ( B e. Fin -> ( # ` B ) e. NN0 )
5 3 4 syl
 |-  ( ph -> ( # ` B ) e. NN0 )
6 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
7 1 6 mndidcl
 |-  ( G e. Mnd -> ( 0g ` G ) e. B )
8 2 7 syl
 |-  ( ph -> ( 0g ` G ) e. B )
9 8 3 hashelne0d
 |-  ( ph -> -. ( # ` B ) = 0 )
10 9 neqned
 |-  ( ph -> ( # ` B ) =/= 0 )
11 elnnne0
 |-  ( ( # ` B ) e. NN <-> ( ( # ` B ) e. NN0 /\ ( # ` B ) =/= 0 ) )
12 5 10 11 sylanbrc
 |-  ( ph -> ( # ` B ) e. NN )