Step |
Hyp |
Ref |
Expression |
1 |
|
fndmeng |
|- ( ( F Fn A /\ A e. _V ) -> A ~~ F ) |
2 |
|
ensym |
|- ( A ~~ F -> F ~~ A ) |
3 |
|
hasheni |
|- ( F ~~ A -> ( # ` F ) = ( # ` A ) ) |
4 |
1 2 3
|
3syl |
|- ( ( F Fn A /\ A e. _V ) -> ( # ` F ) = ( # ` A ) ) |
5 |
|
dmexg |
|- ( F e. _V -> dom F e. _V ) |
6 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
7 |
6
|
eleq1d |
|- ( F Fn A -> ( dom F e. _V <-> A e. _V ) ) |
8 |
5 7
|
syl5ib |
|- ( F Fn A -> ( F e. _V -> A e. _V ) ) |
9 |
8
|
con3dimp |
|- ( ( F Fn A /\ -. A e. _V ) -> -. F e. _V ) |
10 |
|
fvprc |
|- ( -. F e. _V -> ( # ` F ) = (/) ) |
11 |
9 10
|
syl |
|- ( ( F Fn A /\ -. A e. _V ) -> ( # ` F ) = (/) ) |
12 |
|
fvprc |
|- ( -. A e. _V -> ( # ` A ) = (/) ) |
13 |
12
|
adantl |
|- ( ( F Fn A /\ -. A e. _V ) -> ( # ` A ) = (/) ) |
14 |
11 13
|
eqtr4d |
|- ( ( F Fn A /\ -. A e. _V ) -> ( # ` F ) = ( # ` A ) ) |
15 |
4 14
|
pm2.61dan |
|- ( F Fn A -> ( # ` F ) = ( # ` A ) ) |