| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzel2 |  |-  ( B e. ( ZZ>= ` A ) -> A e. ZZ ) | 
						
							| 2 |  | eluzelz |  |-  ( B e. ( ZZ>= ` A ) -> B e. ZZ ) | 
						
							| 3 |  | 1z |  |-  1 e. ZZ | 
						
							| 4 |  | zsubcl |  |-  ( ( 1 e. ZZ /\ A e. ZZ ) -> ( 1 - A ) e. ZZ ) | 
						
							| 5 | 3 1 4 | sylancr |  |-  ( B e. ( ZZ>= ` A ) -> ( 1 - A ) e. ZZ ) | 
						
							| 6 |  | fzen |  |-  ( ( A e. ZZ /\ B e. ZZ /\ ( 1 - A ) e. ZZ ) -> ( A ... B ) ~~ ( ( A + ( 1 - A ) ) ... ( B + ( 1 - A ) ) ) ) | 
						
							| 7 | 1 2 5 6 | syl3anc |  |-  ( B e. ( ZZ>= ` A ) -> ( A ... B ) ~~ ( ( A + ( 1 - A ) ) ... ( B + ( 1 - A ) ) ) ) | 
						
							| 8 | 1 | zcnd |  |-  ( B e. ( ZZ>= ` A ) -> A e. CC ) | 
						
							| 9 |  | ax-1cn |  |-  1 e. CC | 
						
							| 10 |  | pncan3 |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( A + ( 1 - A ) ) = 1 ) | 
						
							| 11 | 8 9 10 | sylancl |  |-  ( B e. ( ZZ>= ` A ) -> ( A + ( 1 - A ) ) = 1 ) | 
						
							| 12 |  | 1cnd |  |-  ( B e. ( ZZ>= ` A ) -> 1 e. CC ) | 
						
							| 13 | 2 | zcnd |  |-  ( B e. ( ZZ>= ` A ) -> B e. CC ) | 
						
							| 14 | 13 8 | subcld |  |-  ( B e. ( ZZ>= ` A ) -> ( B - A ) e. CC ) | 
						
							| 15 | 13 12 8 | addsub12d |  |-  ( B e. ( ZZ>= ` A ) -> ( B + ( 1 - A ) ) = ( 1 + ( B - A ) ) ) | 
						
							| 16 | 12 14 15 | comraddd |  |-  ( B e. ( ZZ>= ` A ) -> ( B + ( 1 - A ) ) = ( ( B - A ) + 1 ) ) | 
						
							| 17 | 11 16 | oveq12d |  |-  ( B e. ( ZZ>= ` A ) -> ( ( A + ( 1 - A ) ) ... ( B + ( 1 - A ) ) ) = ( 1 ... ( ( B - A ) + 1 ) ) ) | 
						
							| 18 | 7 17 | breqtrd |  |-  ( B e. ( ZZ>= ` A ) -> ( A ... B ) ~~ ( 1 ... ( ( B - A ) + 1 ) ) ) | 
						
							| 19 |  | hasheni |  |-  ( ( A ... B ) ~~ ( 1 ... ( ( B - A ) + 1 ) ) -> ( # ` ( A ... B ) ) = ( # ` ( 1 ... ( ( B - A ) + 1 ) ) ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( B e. ( ZZ>= ` A ) -> ( # ` ( A ... B ) ) = ( # ` ( 1 ... ( ( B - A ) + 1 ) ) ) ) | 
						
							| 21 |  | uznn0sub |  |-  ( B e. ( ZZ>= ` A ) -> ( B - A ) e. NN0 ) | 
						
							| 22 |  | peano2nn0 |  |-  ( ( B - A ) e. NN0 -> ( ( B - A ) + 1 ) e. NN0 ) | 
						
							| 23 |  | hashfz1 |  |-  ( ( ( B - A ) + 1 ) e. NN0 -> ( # ` ( 1 ... ( ( B - A ) + 1 ) ) ) = ( ( B - A ) + 1 ) ) | 
						
							| 24 | 21 22 23 | 3syl |  |-  ( B e. ( ZZ>= ` A ) -> ( # ` ( 1 ... ( ( B - A ) + 1 ) ) ) = ( ( B - A ) + 1 ) ) | 
						
							| 25 | 20 24 | eqtrd |  |-  ( B e. ( ZZ>= ` A ) -> ( # ` ( A ... B ) ) = ( ( B - A ) + 1 ) ) |