Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
2 |
1
|
cardfz |
|- ( N e. NN0 -> ( card ` ( 1 ... N ) ) = ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` N ) ) |
3 |
2
|
fveq2d |
|- ( N e. NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... N ) ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` N ) ) ) |
4 |
|
fzfid |
|- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
5 |
1
|
hashgval |
|- ( ( 1 ... N ) e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... N ) ) ) = ( # ` ( 1 ... N ) ) ) |
6 |
4 5
|
syl |
|- ( N e. NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( 1 ... N ) ) ) = ( # ` ( 1 ... N ) ) ) |
7 |
1
|
hashgf1o |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 |
8 |
|
f1ocnvfv2 |
|- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 /\ N e. NN0 ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` N ) ) = N ) |
9 |
7 8
|
mpan |
|- ( N e. NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( `' ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` N ) ) = N ) |
10 |
3 6 9
|
3eqtr3d |
|- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |