Step |
Hyp |
Ref |
Expression |
1 |
|
hashgadd.1 |
|- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
2 |
|
oveq2 |
|- ( n = (/) -> ( A +o n ) = ( A +o (/) ) ) |
3 |
2
|
fveq2d |
|- ( n = (/) -> ( G ` ( A +o n ) ) = ( G ` ( A +o (/) ) ) ) |
4 |
|
fveq2 |
|- ( n = (/) -> ( G ` n ) = ( G ` (/) ) ) |
5 |
4
|
oveq2d |
|- ( n = (/) -> ( ( G ` A ) + ( G ` n ) ) = ( ( G ` A ) + ( G ` (/) ) ) ) |
6 |
3 5
|
eqeq12d |
|- ( n = (/) -> ( ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) <-> ( G ` ( A +o (/) ) ) = ( ( G ` A ) + ( G ` (/) ) ) ) ) |
7 |
6
|
imbi2d |
|- ( n = (/) -> ( ( A e. _om -> ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) ) <-> ( A e. _om -> ( G ` ( A +o (/) ) ) = ( ( G ` A ) + ( G ` (/) ) ) ) ) ) |
8 |
|
oveq2 |
|- ( n = z -> ( A +o n ) = ( A +o z ) ) |
9 |
8
|
fveq2d |
|- ( n = z -> ( G ` ( A +o n ) ) = ( G ` ( A +o z ) ) ) |
10 |
|
fveq2 |
|- ( n = z -> ( G ` n ) = ( G ` z ) ) |
11 |
10
|
oveq2d |
|- ( n = z -> ( ( G ` A ) + ( G ` n ) ) = ( ( G ` A ) + ( G ` z ) ) ) |
12 |
9 11
|
eqeq12d |
|- ( n = z -> ( ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) <-> ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) ) |
13 |
12
|
imbi2d |
|- ( n = z -> ( ( A e. _om -> ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) ) <-> ( A e. _om -> ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) ) ) |
14 |
|
oveq2 |
|- ( n = suc z -> ( A +o n ) = ( A +o suc z ) ) |
15 |
14
|
fveq2d |
|- ( n = suc z -> ( G ` ( A +o n ) ) = ( G ` ( A +o suc z ) ) ) |
16 |
|
fveq2 |
|- ( n = suc z -> ( G ` n ) = ( G ` suc z ) ) |
17 |
16
|
oveq2d |
|- ( n = suc z -> ( ( G ` A ) + ( G ` n ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) |
18 |
15 17
|
eqeq12d |
|- ( n = suc z -> ( ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) <-> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) |
19 |
18
|
imbi2d |
|- ( n = suc z -> ( ( A e. _om -> ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) ) <-> ( A e. _om -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) ) |
20 |
|
oveq2 |
|- ( n = B -> ( A +o n ) = ( A +o B ) ) |
21 |
20
|
fveq2d |
|- ( n = B -> ( G ` ( A +o n ) ) = ( G ` ( A +o B ) ) ) |
22 |
|
fveq2 |
|- ( n = B -> ( G ` n ) = ( G ` B ) ) |
23 |
22
|
oveq2d |
|- ( n = B -> ( ( G ` A ) + ( G ` n ) ) = ( ( G ` A ) + ( G ` B ) ) ) |
24 |
21 23
|
eqeq12d |
|- ( n = B -> ( ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) <-> ( G ` ( A +o B ) ) = ( ( G ` A ) + ( G ` B ) ) ) ) |
25 |
24
|
imbi2d |
|- ( n = B -> ( ( A e. _om -> ( G ` ( A +o n ) ) = ( ( G ` A ) + ( G ` n ) ) ) <-> ( A e. _om -> ( G ` ( A +o B ) ) = ( ( G ` A ) + ( G ` B ) ) ) ) ) |
26 |
1
|
hashgf1o |
|- G : _om -1-1-onto-> NN0 |
27 |
|
f1of |
|- ( G : _om -1-1-onto-> NN0 -> G : _om --> NN0 ) |
28 |
26 27
|
ax-mp |
|- G : _om --> NN0 |
29 |
28
|
ffvelrni |
|- ( A e. _om -> ( G ` A ) e. NN0 ) |
30 |
29
|
nn0cnd |
|- ( A e. _om -> ( G ` A ) e. CC ) |
31 |
30
|
addid1d |
|- ( A e. _om -> ( ( G ` A ) + 0 ) = ( G ` A ) ) |
32 |
|
0z |
|- 0 e. ZZ |
33 |
32 1
|
om2uz0i |
|- ( G ` (/) ) = 0 |
34 |
33
|
oveq2i |
|- ( ( G ` A ) + ( G ` (/) ) ) = ( ( G ` A ) + 0 ) |
35 |
34
|
a1i |
|- ( A e. _om -> ( ( G ` A ) + ( G ` (/) ) ) = ( ( G ` A ) + 0 ) ) |
36 |
|
nna0 |
|- ( A e. _om -> ( A +o (/) ) = A ) |
37 |
36
|
fveq2d |
|- ( A e. _om -> ( G ` ( A +o (/) ) ) = ( G ` A ) ) |
38 |
31 35 37
|
3eqtr4rd |
|- ( A e. _om -> ( G ` ( A +o (/) ) ) = ( ( G ` A ) + ( G ` (/) ) ) ) |
39 |
|
nnasuc |
|- ( ( A e. _om /\ z e. _om ) -> ( A +o suc z ) = suc ( A +o z ) ) |
40 |
39
|
fveq2d |
|- ( ( A e. _om /\ z e. _om ) -> ( G ` ( A +o suc z ) ) = ( G ` suc ( A +o z ) ) ) |
41 |
|
nnacl |
|- ( ( A e. _om /\ z e. _om ) -> ( A +o z ) e. _om ) |
42 |
32 1
|
om2uzsuci |
|- ( ( A +o z ) e. _om -> ( G ` suc ( A +o z ) ) = ( ( G ` ( A +o z ) ) + 1 ) ) |
43 |
41 42
|
syl |
|- ( ( A e. _om /\ z e. _om ) -> ( G ` suc ( A +o z ) ) = ( ( G ` ( A +o z ) ) + 1 ) ) |
44 |
40 43
|
eqtrd |
|- ( ( A e. _om /\ z e. _om ) -> ( G ` ( A +o suc z ) ) = ( ( G ` ( A +o z ) ) + 1 ) ) |
45 |
44
|
3adant3 |
|- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( G ` ( A +o suc z ) ) = ( ( G ` ( A +o z ) ) + 1 ) ) |
46 |
28
|
ffvelrni |
|- ( z e. _om -> ( G ` z ) e. NN0 ) |
47 |
46
|
nn0cnd |
|- ( z e. _om -> ( G ` z ) e. CC ) |
48 |
|
ax-1cn |
|- 1 e. CC |
49 |
|
addass |
|- ( ( ( G ` A ) e. CC /\ ( G ` z ) e. CC /\ 1 e. CC ) -> ( ( ( G ` A ) + ( G ` z ) ) + 1 ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
50 |
48 49
|
mp3an3 |
|- ( ( ( G ` A ) e. CC /\ ( G ` z ) e. CC ) -> ( ( ( G ` A ) + ( G ` z ) ) + 1 ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
51 |
30 47 50
|
syl2an |
|- ( ( A e. _om /\ z e. _om ) -> ( ( ( G ` A ) + ( G ` z ) ) + 1 ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
52 |
51
|
3adant3 |
|- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( ( ( G ` A ) + ( G ` z ) ) + 1 ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
53 |
|
oveq1 |
|- ( ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) -> ( ( G ` ( A +o z ) ) + 1 ) = ( ( ( G ` A ) + ( G ` z ) ) + 1 ) ) |
54 |
53
|
3ad2ant3 |
|- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( ( G ` ( A +o z ) ) + 1 ) = ( ( ( G ` A ) + ( G ` z ) ) + 1 ) ) |
55 |
32 1
|
om2uzsuci |
|- ( z e. _om -> ( G ` suc z ) = ( ( G ` z ) + 1 ) ) |
56 |
55
|
oveq2d |
|- ( z e. _om -> ( ( G ` A ) + ( G ` suc z ) ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
57 |
56
|
3ad2ant2 |
|- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( ( G ` A ) + ( G ` suc z ) ) = ( ( G ` A ) + ( ( G ` z ) + 1 ) ) ) |
58 |
52 54 57
|
3eqtr4d |
|- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( ( G ` ( A +o z ) ) + 1 ) = ( ( G ` A ) + ( G ` suc z ) ) ) |
59 |
45 58
|
eqtrd |
|- ( ( A e. _om /\ z e. _om /\ ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) |
60 |
59
|
3expia |
|- ( ( A e. _om /\ z e. _om ) -> ( ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) |
61 |
60
|
expcom |
|- ( z e. _om -> ( A e. _om -> ( ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) ) |
62 |
61
|
a2d |
|- ( z e. _om -> ( ( A e. _om -> ( G ` ( A +o z ) ) = ( ( G ` A ) + ( G ` z ) ) ) -> ( A e. _om -> ( G ` ( A +o suc z ) ) = ( ( G ` A ) + ( G ` suc z ) ) ) ) ) |
63 |
7 13 19 25 38 62
|
finds |
|- ( B e. _om -> ( A e. _om -> ( G ` ( A +o B ) ) = ( ( G ` A ) + ( G ` B ) ) ) ) |
64 |
63
|
impcom |
|- ( ( A e. _om /\ B e. _om ) -> ( G ` ( A +o B ) ) = ( ( G ` A ) + ( G ` B ) ) ) |