| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( ( A e. V /\ A =/= (/) ) /\ A e. Fin ) -> A e. Fin ) | 
						
							| 2 |  | simplr |  |-  ( ( ( A e. V /\ A =/= (/) ) /\ A e. Fin ) -> A =/= (/) ) | 
						
							| 3 |  | hashnncl |  |-  ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) | 
						
							| 4 | 3 | biimpar |  |-  ( ( A e. Fin /\ A =/= (/) ) -> ( # ` A ) e. NN ) | 
						
							| 5 | 1 2 4 | syl2anc |  |-  ( ( ( A e. V /\ A =/= (/) ) /\ A e. Fin ) -> ( # ` A ) e. NN ) | 
						
							| 6 | 5 | nnge1d |  |-  ( ( ( A e. V /\ A =/= (/) ) /\ A e. Fin ) -> 1 <_ ( # ` A ) ) | 
						
							| 7 |  | 1xr |  |-  1 e. RR* | 
						
							| 8 |  | pnfge |  |-  ( 1 e. RR* -> 1 <_ +oo ) | 
						
							| 9 | 7 8 | ax-mp |  |-  1 <_ +oo | 
						
							| 10 |  | hashinf |  |-  ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) | 
						
							| 11 | 10 | adantlr |  |-  ( ( ( A e. V /\ A =/= (/) ) /\ -. A e. Fin ) -> ( # ` A ) = +oo ) | 
						
							| 12 | 9 11 | breqtrrid |  |-  ( ( ( A e. V /\ A =/= (/) ) /\ -. A e. Fin ) -> 1 <_ ( # ` A ) ) | 
						
							| 13 | 6 12 | pm2.61dan |  |-  ( ( A e. V /\ A =/= (/) ) -> 1 <_ ( # ` A ) ) |