Description: A set has size at least 2 iff it has at least 2 different elements. (Contributed by AV, 14-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | hashge2el2difb | |- ( D e. V -> ( 2 <_ ( # ` D ) <-> E. x e. D E. y e. D x =/= y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashge2el2dif | |- ( ( D e. V /\ 2 <_ ( # ` D ) ) -> E. x e. D E. y e. D x =/= y ) |
|
2 | hashge2el2difr | |- ( ( D e. V /\ E. x e. D E. y e. D x =/= y ) -> 2 <_ ( # ` D ) ) |
|
3 | 1 2 | impbida | |- ( D e. V -> ( 2 <_ ( # ` D ) <-> E. x e. D E. y e. D x =/= y ) ) |