| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hashge0 |  |-  ( A e. V -> 0 <_ ( # ` A ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. V /\ A =/= (/) ) -> 0 <_ ( # ` A ) ) | 
						
							| 3 |  | hasheq0 |  |-  ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) | 
						
							| 4 | 3 | necon3bid |  |-  ( A e. V -> ( ( # ` A ) =/= 0 <-> A =/= (/) ) ) | 
						
							| 5 | 4 | biimpar |  |-  ( ( A e. V /\ A =/= (/) ) -> ( # ` A ) =/= 0 ) | 
						
							| 6 | 2 5 | jca |  |-  ( ( A e. V /\ A =/= (/) ) -> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) | 
						
							| 7 |  | 0xr |  |-  0 e. RR* | 
						
							| 8 |  | hashxrcl |  |-  ( A e. V -> ( # ` A ) e. RR* ) | 
						
							| 9 |  | xrltlen |  |-  ( ( 0 e. RR* /\ ( # ` A ) e. RR* ) -> ( 0 < ( # ` A ) <-> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) ) | 
						
							| 10 | 7 8 9 | sylancr |  |-  ( A e. V -> ( 0 < ( # ` A ) <-> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) ) | 
						
							| 11 | 10 | biimpar |  |-  ( ( A e. V /\ ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) -> 0 < ( # ` A ) ) | 
						
							| 12 | 6 11 | syldan |  |-  ( ( A e. V /\ A =/= (/) ) -> 0 < ( # ` A ) ) |