Step |
Hyp |
Ref |
Expression |
1 |
|
hashge0 |
|- ( A e. V -> 0 <_ ( # ` A ) ) |
2 |
1
|
adantr |
|- ( ( A e. V /\ A =/= (/) ) -> 0 <_ ( # ` A ) ) |
3 |
|
hasheq0 |
|- ( A e. V -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
4 |
3
|
necon3bid |
|- ( A e. V -> ( ( # ` A ) =/= 0 <-> A =/= (/) ) ) |
5 |
4
|
biimpar |
|- ( ( A e. V /\ A =/= (/) ) -> ( # ` A ) =/= 0 ) |
6 |
2 5
|
jca |
|- ( ( A e. V /\ A =/= (/) ) -> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) |
7 |
|
0xr |
|- 0 e. RR* |
8 |
|
hashxrcl |
|- ( A e. V -> ( # ` A ) e. RR* ) |
9 |
|
xrltlen |
|- ( ( 0 e. RR* /\ ( # ` A ) e. RR* ) -> ( 0 < ( # ` A ) <-> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) ) |
10 |
7 8 9
|
sylancr |
|- ( A e. V -> ( 0 < ( # ` A ) <-> ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) ) |
11 |
10
|
biimpar |
|- ( ( A e. V /\ ( 0 <_ ( # ` A ) /\ ( # ` A ) =/= 0 ) ) -> 0 < ( # ` A ) ) |
12 |
6 11
|
syldan |
|- ( ( A e. V /\ A =/= (/) ) -> 0 < ( # ` A ) ) |