Metamath Proof Explorer


Theorem hashgt0elexb

Description: The size of a set is greater than zero if and only if the set contains at least one element. (Contributed by Alexander van der Vekens, 18-Jan-2018)

Ref Expression
Assertion hashgt0elexb
|- ( V e. W -> ( 0 < ( # ` V ) <-> E. x x e. V ) )

Proof

Step Hyp Ref Expression
1 hashgt0elex
 |-  ( ( V e. W /\ 0 < ( # ` V ) ) -> E. x x e. V )
2 n0
 |-  ( V =/= (/) <-> E. x x e. V )
3 hashgt0
 |-  ( ( V e. W /\ V =/= (/) ) -> 0 < ( # ` V ) )
4 2 3 sylan2br
 |-  ( ( V e. W /\ E. x x e. V ) -> 0 < ( # ` V ) )
5 1 4 impbida
 |-  ( V e. W -> ( 0 < ( # ` V ) <-> E. x x e. V ) )