| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 2 |  | fveq2 |  |-  ( (/) = V -> ( # ` (/) ) = ( # ` V ) ) | 
						
							| 3 | 1 2 | eqtr3id |  |-  ( (/) = V -> 0 = ( # ` V ) ) | 
						
							| 4 |  | breq2 |  |-  ( ( # ` V ) = 0 -> ( 1 < ( # ` V ) <-> 1 < 0 ) ) | 
						
							| 5 | 4 | biimpd |  |-  ( ( # ` V ) = 0 -> ( 1 < ( # ` V ) -> 1 < 0 ) ) | 
						
							| 6 | 5 | eqcoms |  |-  ( 0 = ( # ` V ) -> ( 1 < ( # ` V ) -> 1 < 0 ) ) | 
						
							| 7 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 8 |  | 0re |  |-  0 e. RR | 
						
							| 9 |  | 1re |  |-  1 e. RR | 
						
							| 10 | 8 9 | lenlti |  |-  ( 0 <_ 1 <-> -. 1 < 0 ) | 
						
							| 11 |  | pm2.21 |  |-  ( -. 1 < 0 -> ( 1 < 0 -> E. b e. V A =/= b ) ) | 
						
							| 12 | 10 11 | sylbi |  |-  ( 0 <_ 1 -> ( 1 < 0 -> E. b e. V A =/= b ) ) | 
						
							| 13 | 7 12 | ax-mp |  |-  ( 1 < 0 -> E. b e. V A =/= b ) | 
						
							| 14 | 6 13 | syl6com |  |-  ( 1 < ( # ` V ) -> ( 0 = ( # ` V ) -> E. b e. V A =/= b ) ) | 
						
							| 15 | 14 | 3ad2ant2 |  |-  ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> ( 0 = ( # ` V ) -> E. b e. V A =/= b ) ) | 
						
							| 16 | 3 15 | syl5com |  |-  ( (/) = V -> ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> E. b e. V A =/= b ) ) | 
						
							| 17 |  | df-ne |  |-  ( (/) =/= V <-> -. (/) = V ) | 
						
							| 18 |  | necom |  |-  ( (/) =/= V <-> V =/= (/) ) | 
						
							| 19 | 17 18 | bitr3i |  |-  ( -. (/) = V <-> V =/= (/) ) | 
						
							| 20 |  | ralnex |  |-  ( A. b e. V -. A =/= b <-> -. E. b e. V A =/= b ) | 
						
							| 21 |  | nne |  |-  ( -. A =/= b <-> A = b ) | 
						
							| 22 |  | eqcom |  |-  ( A = b <-> b = A ) | 
						
							| 23 | 21 22 | bitri |  |-  ( -. A =/= b <-> b = A ) | 
						
							| 24 | 23 | ralbii |  |-  ( A. b e. V -. A =/= b <-> A. b e. V b = A ) | 
						
							| 25 | 20 24 | bitr3i |  |-  ( -. E. b e. V A =/= b <-> A. b e. V b = A ) | 
						
							| 26 |  | eqsn |  |-  ( V =/= (/) -> ( V = { A } <-> A. b e. V b = A ) ) | 
						
							| 27 | 26 | bicomd |  |-  ( V =/= (/) -> ( A. b e. V b = A <-> V = { A } ) ) | 
						
							| 28 | 27 | adantl |  |-  ( ( V e. W /\ V =/= (/) ) -> ( A. b e. V b = A <-> V = { A } ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( A. b e. V b = A <-> V = { A } ) ) | 
						
							| 30 |  | hashsnle1 |  |-  ( # ` { A } ) <_ 1 | 
						
							| 31 |  | fveq2 |  |-  ( V = { A } -> ( # ` V ) = ( # ` { A } ) ) | 
						
							| 32 | 31 | breq1d |  |-  ( V = { A } -> ( ( # ` V ) <_ 1 <-> ( # ` { A } ) <_ 1 ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) /\ V = { A } ) -> ( ( # ` V ) <_ 1 <-> ( # ` { A } ) <_ 1 ) ) | 
						
							| 34 | 30 33 | mpbiri |  |-  ( ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) /\ V = { A } ) -> ( # ` V ) <_ 1 ) | 
						
							| 35 | 34 | ex |  |-  ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( V = { A } -> ( # ` V ) <_ 1 ) ) | 
						
							| 36 | 29 35 | sylbid |  |-  ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( A. b e. V b = A -> ( # ` V ) <_ 1 ) ) | 
						
							| 37 |  | hashxrcl |  |-  ( V e. W -> ( # ` V ) e. RR* ) | 
						
							| 38 | 37 | adantr |  |-  ( ( V e. W /\ V =/= (/) ) -> ( # ` V ) e. RR* ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( # ` V ) e. RR* ) | 
						
							| 40 |  | 1xr |  |-  1 e. RR* | 
						
							| 41 |  | xrlenlt |  |-  ( ( ( # ` V ) e. RR* /\ 1 e. RR* ) -> ( ( # ` V ) <_ 1 <-> -. 1 < ( # ` V ) ) ) | 
						
							| 42 | 39 40 41 | sylancl |  |-  ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( ( # ` V ) <_ 1 <-> -. 1 < ( # ` V ) ) ) | 
						
							| 43 | 36 42 | sylibd |  |-  ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( A. b e. V b = A -> -. 1 < ( # ` V ) ) ) | 
						
							| 44 | 25 43 | biimtrid |  |-  ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( -. E. b e. V A =/= b -> -. 1 < ( # ` V ) ) ) | 
						
							| 45 | 44 | con4d |  |-  ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( 1 < ( # ` V ) -> E. b e. V A =/= b ) ) | 
						
							| 46 | 45 | exp31 |  |-  ( V e. W -> ( V =/= (/) -> ( A e. V -> ( 1 < ( # ` V ) -> E. b e. V A =/= b ) ) ) ) | 
						
							| 47 | 46 | com24 |  |-  ( V e. W -> ( 1 < ( # ` V ) -> ( A e. V -> ( V =/= (/) -> E. b e. V A =/= b ) ) ) ) | 
						
							| 48 | 47 | 3imp |  |-  ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> ( V =/= (/) -> E. b e. V A =/= b ) ) | 
						
							| 49 | 48 | com12 |  |-  ( V =/= (/) -> ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> E. b e. V A =/= b ) ) | 
						
							| 50 | 19 49 | sylbi |  |-  ( -. (/) = V -> ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> E. b e. V A =/= b ) ) | 
						
							| 51 | 16 50 | pm2.61i |  |-  ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> E. b e. V A =/= b ) |