Step |
Hyp |
Ref |
Expression |
1 |
|
hashresfn |
|- ( # |` _om ) Fn _om |
2 |
|
frfnom |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) Fn _om |
3 |
|
eqfnfv |
|- ( ( ( # |` _om ) Fn _om /\ ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) Fn _om ) -> ( ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) <-> A. y e. _om ( ( # |` _om ) ` y ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` y ) ) ) |
4 |
1 2 3
|
mp2an |
|- ( ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) <-> A. y e. _om ( ( # |` _om ) ` y ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` y ) ) |
5 |
|
fvres |
|- ( y e. _om -> ( ( # |` _om ) ` y ) = ( # ` y ) ) |
6 |
|
nnfi |
|- ( y e. _om -> y e. Fin ) |
7 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
8 |
7
|
hashgval |
|- ( y e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) = ( # ` y ) ) |
9 |
6 8
|
syl |
|- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) = ( # ` y ) ) |
10 |
|
cardnn |
|- ( y e. _om -> ( card ` y ) = y ) |
11 |
10
|
fveq2d |
|- ( y e. _om -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` y ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` y ) ) |
12 |
5 9 11
|
3eqtr2d |
|- ( y e. _om -> ( ( # |` _om ) ` y ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` y ) ) |
13 |
4 12
|
mprgbir |
|- ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |