Step |
Hyp |
Ref |
Expression |
1 |
|
fveqeq2 |
|- ( P = ( E " ran F ) -> ( ( # ` P ) = N <-> ( # ` ( E " ran F ) ) = N ) ) |
2 |
1
|
adantl |
|- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ P = ( E " ran F ) ) -> ( ( # ` P ) = N <-> ( # ` ( E " ran F ) ) = N ) ) |
3 |
|
hashimarn |
|- ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( # ` ( E " ran F ) ) = ( # ` F ) ) ) |
4 |
3
|
impcom |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) -> ( # ` ( E " ran F ) ) = ( # ` F ) ) |
5 |
|
id |
|- ( ( # ` ( E " ran F ) ) = N -> ( # ` ( E " ran F ) ) = N ) |
6 |
4 5
|
sylan9req |
|- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ ( # ` ( E " ran F ) ) = N ) -> ( # ` F ) = N ) |
7 |
6
|
ex |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) -> ( ( # ` ( E " ran F ) ) = N -> ( # ` F ) = N ) ) |
8 |
7
|
adantr |
|- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ P = ( E " ran F ) ) -> ( ( # ` ( E " ran F ) ) = N -> ( # ` F ) = N ) ) |
9 |
2 8
|
sylbid |
|- ( ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ ( E : dom E -1-1-> ran E /\ E e. V ) ) /\ P = ( E " ran F ) ) -> ( ( # ` P ) = N -> ( # ` F ) = N ) ) |
10 |
9
|
exp31 |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( P = ( E " ran F ) -> ( ( # ` P ) = N -> ( # ` F ) = N ) ) ) ) |
11 |
10
|
com23 |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( P = ( E " ran F ) -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( ( # ` P ) = N -> ( # ` F ) = N ) ) ) ) |
12 |
11
|
com34 |
|- ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E -> ( P = ( E " ran F ) -> ( ( # ` P ) = N -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( # ` F ) = N ) ) ) ) |
13 |
12
|
3imp |
|- ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ P = ( E " ran F ) /\ ( # ` P ) = N ) -> ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( # ` F ) = N ) ) |
14 |
13
|
com12 |
|- ( ( E : dom E -1-1-> ran E /\ E e. V ) -> ( ( F : ( 0 ..^ ( # ` F ) ) -1-1-> dom E /\ P = ( E " ran F ) /\ ( # ` P ) = N ) -> ( # ` F ) = N ) ) |