Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. V -> A e. _V ) |
2 |
|
eldif |
|- ( A e. ( _V \ Fin ) <-> ( A e. _V /\ -. A e. Fin ) ) |
3 |
|
df-hash |
|- # = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |
4 |
3
|
reseq1i |
|- ( # |` ( _V \ Fin ) ) = ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` ( _V \ Fin ) ) |
5 |
|
resundir |
|- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |` ( _V \ Fin ) ) = ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) ) |
6 |
|
disjdif |
|- ( Fin i^i ( _V \ Fin ) ) = (/) |
7 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
8 |
|
eqid |
|- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
9 |
7 8
|
hashkf |
|- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) : Fin --> NN0 |
10 |
|
ffn |
|- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) : Fin --> NN0 -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) Fn Fin ) |
11 |
|
fnresdisj |
|- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) Fn Fin -> ( ( Fin i^i ( _V \ Fin ) ) = (/) <-> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) = (/) ) ) |
12 |
9 10 11
|
mp2b |
|- ( ( Fin i^i ( _V \ Fin ) ) = (/) <-> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) = (/) ) |
13 |
6 12
|
mpbi |
|- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) = (/) |
14 |
|
pnfex |
|- +oo e. _V |
15 |
14
|
fconst |
|- ( ( _V \ Fin ) X. { +oo } ) : ( _V \ Fin ) --> { +oo } |
16 |
|
ffn |
|- ( ( ( _V \ Fin ) X. { +oo } ) : ( _V \ Fin ) --> { +oo } -> ( ( _V \ Fin ) X. { +oo } ) Fn ( _V \ Fin ) ) |
17 |
|
fnresdm |
|- ( ( ( _V \ Fin ) X. { +oo } ) Fn ( _V \ Fin ) -> ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) = ( ( _V \ Fin ) X. { +oo } ) ) |
18 |
15 16 17
|
mp2b |
|- ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) = ( ( _V \ Fin ) X. { +oo } ) |
19 |
13 18
|
uneq12i |
|- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) ) = ( (/) u. ( ( _V \ Fin ) X. { +oo } ) ) |
20 |
|
uncom |
|- ( (/) u. ( ( _V \ Fin ) X. { +oo } ) ) = ( ( ( _V \ Fin ) X. { +oo } ) u. (/) ) |
21 |
|
un0 |
|- ( ( ( _V \ Fin ) X. { +oo } ) u. (/) ) = ( ( _V \ Fin ) X. { +oo } ) |
22 |
19 20 21
|
3eqtri |
|- ( ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |` ( _V \ Fin ) ) u. ( ( ( _V \ Fin ) X. { +oo } ) |` ( _V \ Fin ) ) ) = ( ( _V \ Fin ) X. { +oo } ) |
23 |
4 5 22
|
3eqtri |
|- ( # |` ( _V \ Fin ) ) = ( ( _V \ Fin ) X. { +oo } ) |
24 |
23
|
fveq1i |
|- ( ( # |` ( _V \ Fin ) ) ` A ) = ( ( ( _V \ Fin ) X. { +oo } ) ` A ) |
25 |
|
fvres |
|- ( A e. ( _V \ Fin ) -> ( ( # |` ( _V \ Fin ) ) ` A ) = ( # ` A ) ) |
26 |
14
|
fvconst2 |
|- ( A e. ( _V \ Fin ) -> ( ( ( _V \ Fin ) X. { +oo } ) ` A ) = +oo ) |
27 |
24 25 26
|
3eqtr3a |
|- ( A e. ( _V \ Fin ) -> ( # ` A ) = +oo ) |
28 |
2 27
|
sylbir |
|- ( ( A e. _V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |
29 |
1 28
|
sylan |
|- ( ( A e. V /\ -. A e. Fin ) -> ( # ` A ) = +oo ) |