Step |
Hyp |
Ref |
Expression |
1 |
|
hashnn0pnf |
|- ( A e. V -> ( ( # ` A ) e. NN0 \/ ( # ` A ) = +oo ) ) |
2 |
|
mnfnre |
|- -oo e/ RR |
3 |
|
df-nel |
|- ( -oo e/ RR <-> -. -oo e. RR ) |
4 |
|
nn0re |
|- ( -oo e. NN0 -> -oo e. RR ) |
5 |
4
|
con3i |
|- ( -. -oo e. RR -> -. -oo e. NN0 ) |
6 |
3 5
|
sylbi |
|- ( -oo e/ RR -> -. -oo e. NN0 ) |
7 |
2 6
|
ax-mp |
|- -. -oo e. NN0 |
8 |
|
eleq1 |
|- ( ( # ` A ) = -oo -> ( ( # ` A ) e. NN0 <-> -oo e. NN0 ) ) |
9 |
7 8
|
mtbiri |
|- ( ( # ` A ) = -oo -> -. ( # ` A ) e. NN0 ) |
10 |
9
|
necon2ai |
|- ( ( # ` A ) e. NN0 -> ( # ` A ) =/= -oo ) |
11 |
|
pnfnemnf |
|- +oo =/= -oo |
12 |
|
neeq1 |
|- ( ( # ` A ) = +oo -> ( ( # ` A ) =/= -oo <-> +oo =/= -oo ) ) |
13 |
11 12
|
mpbiri |
|- ( ( # ` A ) = +oo -> ( # ` A ) =/= -oo ) |
14 |
10 13
|
jaoi |
|- ( ( ( # ` A ) e. NN0 \/ ( # ` A ) = +oo ) -> ( # ` A ) =/= -oo ) |
15 |
1 14
|
syl |
|- ( A e. V -> ( # ` A ) =/= -oo ) |