| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnne0 |
|- ( ( # ` A ) e. NN -> ( # ` A ) =/= 0 ) |
| 2 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
| 3 |
|
elnn0 |
|- ( ( # ` A ) e. NN0 <-> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
| 4 |
2 3
|
sylib |
|- ( A e. Fin -> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
| 5 |
4
|
ord |
|- ( A e. Fin -> ( -. ( # ` A ) e. NN -> ( # ` A ) = 0 ) ) |
| 6 |
5
|
necon1ad |
|- ( A e. Fin -> ( ( # ` A ) =/= 0 -> ( # ` A ) e. NN ) ) |
| 7 |
1 6
|
impbid2 |
|- ( A e. Fin -> ( ( # ` A ) e. NN <-> ( # ` A ) =/= 0 ) ) |
| 8 |
|
hasheq0 |
|- ( A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 9 |
8
|
necon3bid |
|- ( A e. Fin -> ( ( # ` A ) =/= 0 <-> A =/= (/) ) ) |
| 10 |
7 9
|
bitrd |
|- ( A e. Fin -> ( ( # ` A ) e. NN <-> A =/= (/) ) ) |