Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
|- ( ( # ` M ) e/ NN0 <-> -. ( # ` M ) e. NN0 ) |
2 |
|
pm2.21 |
|- ( -. ( # ` M ) e. NN0 -> ( ( # ` M ) e. NN0 -> N <_ ( # ` M ) ) ) |
3 |
1 2
|
sylbi |
|- ( ( # ` M ) e/ NN0 -> ( ( # ` M ) e. NN0 -> N <_ ( # ` M ) ) ) |
4 |
3
|
3ad2ant2 |
|- ( ( M e. V /\ ( # ` M ) e/ NN0 /\ N e. NN0 ) -> ( ( # ` M ) e. NN0 -> N <_ ( # ` M ) ) ) |
5 |
|
nn0re |
|- ( N e. NN0 -> N e. RR ) |
6 |
5
|
ltpnfd |
|- ( N e. NN0 -> N < +oo ) |
7 |
5
|
rexrd |
|- ( N e. NN0 -> N e. RR* ) |
8 |
|
pnfxr |
|- +oo e. RR* |
9 |
|
xrltle |
|- ( ( N e. RR* /\ +oo e. RR* ) -> ( N < +oo -> N <_ +oo ) ) |
10 |
7 8 9
|
sylancl |
|- ( N e. NN0 -> ( N < +oo -> N <_ +oo ) ) |
11 |
6 10
|
mpd |
|- ( N e. NN0 -> N <_ +oo ) |
12 |
|
breq2 |
|- ( ( # ` M ) = +oo -> ( N <_ ( # ` M ) <-> N <_ +oo ) ) |
13 |
11 12
|
syl5ibrcom |
|- ( N e. NN0 -> ( ( # ` M ) = +oo -> N <_ ( # ` M ) ) ) |
14 |
13
|
3ad2ant3 |
|- ( ( M e. V /\ ( # ` M ) e/ NN0 /\ N e. NN0 ) -> ( ( # ` M ) = +oo -> N <_ ( # ` M ) ) ) |
15 |
|
hashnn0pnf |
|- ( M e. V -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |
16 |
15
|
3ad2ant1 |
|- ( ( M e. V /\ ( # ` M ) e/ NN0 /\ N e. NN0 ) -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |
17 |
4 14 16
|
mpjaod |
|- ( ( M e. V /\ ( # ` M ) e/ NN0 /\ N e. NN0 ) -> N <_ ( # ` M ) ) |