| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnzfz.n |
|- ( ph -> N e. NN ) |
| 2 |
|
hashnzfz.j |
|- ( ph -> J e. ZZ ) |
| 3 |
|
hashnzfz.k |
|- ( ph -> K e. ( ZZ>= ` ( J - 1 ) ) ) |
| 4 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 5 |
1 2 3 4
|
hashdvds |
|- ( ph -> ( # ` { x e. ( J ... K ) | N || ( x - 0 ) } ) = ( ( |_ ` ( ( K - 0 ) / N ) ) - ( |_ ` ( ( ( J - 1 ) - 0 ) / N ) ) ) ) |
| 6 |
|
elfzelz |
|- ( x e. ( J ... K ) -> x e. ZZ ) |
| 7 |
6
|
zcnd |
|- ( x e. ( J ... K ) -> x e. CC ) |
| 8 |
7
|
subid1d |
|- ( x e. ( J ... K ) -> ( x - 0 ) = x ) |
| 9 |
8
|
breq2d |
|- ( x e. ( J ... K ) -> ( N || ( x - 0 ) <-> N || x ) ) |
| 10 |
9
|
rabbiia |
|- { x e. ( J ... K ) | N || ( x - 0 ) } = { x e. ( J ... K ) | N || x } |
| 11 |
|
dfrab3 |
|- { x e. ( J ... K ) | N || x } = ( ( J ... K ) i^i { x | N || x } ) |
| 12 |
|
reldvds |
|- Rel || |
| 13 |
|
relimasn |
|- ( Rel || -> ( || " { N } ) = { x | N || x } ) |
| 14 |
12 13
|
ax-mp |
|- ( || " { N } ) = { x | N || x } |
| 15 |
14
|
ineq2i |
|- ( ( J ... K ) i^i ( || " { N } ) ) = ( ( J ... K ) i^i { x | N || x } ) |
| 16 |
|
incom |
|- ( ( J ... K ) i^i ( || " { N } ) ) = ( ( || " { N } ) i^i ( J ... K ) ) |
| 17 |
15 16
|
eqtr3i |
|- ( ( J ... K ) i^i { x | N || x } ) = ( ( || " { N } ) i^i ( J ... K ) ) |
| 18 |
10 11 17
|
3eqtri |
|- { x e. ( J ... K ) | N || ( x - 0 ) } = ( ( || " { N } ) i^i ( J ... K ) ) |
| 19 |
18
|
fveq2i |
|- ( # ` { x e. ( J ... K ) | N || ( x - 0 ) } ) = ( # ` ( ( || " { N } ) i^i ( J ... K ) ) ) |
| 20 |
19
|
a1i |
|- ( ph -> ( # ` { x e. ( J ... K ) | N || ( x - 0 ) } ) = ( # ` ( ( || " { N } ) i^i ( J ... K ) ) ) ) |
| 21 |
|
eluzelz |
|- ( K e. ( ZZ>= ` ( J - 1 ) ) -> K e. ZZ ) |
| 22 |
3 21
|
syl |
|- ( ph -> K e. ZZ ) |
| 23 |
22
|
zcnd |
|- ( ph -> K e. CC ) |
| 24 |
23
|
subid1d |
|- ( ph -> ( K - 0 ) = K ) |
| 25 |
24
|
fvoveq1d |
|- ( ph -> ( |_ ` ( ( K - 0 ) / N ) ) = ( |_ ` ( K / N ) ) ) |
| 26 |
|
peano2zm |
|- ( J e. ZZ -> ( J - 1 ) e. ZZ ) |
| 27 |
2 26
|
syl |
|- ( ph -> ( J - 1 ) e. ZZ ) |
| 28 |
27
|
zcnd |
|- ( ph -> ( J - 1 ) e. CC ) |
| 29 |
28
|
subid1d |
|- ( ph -> ( ( J - 1 ) - 0 ) = ( J - 1 ) ) |
| 30 |
29
|
fvoveq1d |
|- ( ph -> ( |_ ` ( ( ( J - 1 ) - 0 ) / N ) ) = ( |_ ` ( ( J - 1 ) / N ) ) ) |
| 31 |
25 30
|
oveq12d |
|- ( ph -> ( ( |_ ` ( ( K - 0 ) / N ) ) - ( |_ ` ( ( ( J - 1 ) - 0 ) / N ) ) ) = ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( J - 1 ) / N ) ) ) ) |
| 32 |
5 20 31
|
3eqtr3d |
|- ( ph -> ( # ` ( ( || " { N } ) i^i ( J ... K ) ) ) = ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( J - 1 ) / N ) ) ) ) |