| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnzfz2.n |
|- ( ph -> N e. ( ZZ>= ` 2 ) ) |
| 2 |
|
hashnzfz2.k |
|- ( ph -> K e. NN ) |
| 3 |
|
2nn |
|- 2 e. NN |
| 4 |
|
uznnssnn |
|- ( 2 e. NN -> ( ZZ>= ` 2 ) C_ NN ) |
| 5 |
3 4
|
ax-mp |
|- ( ZZ>= ` 2 ) C_ NN |
| 6 |
5 1
|
sselid |
|- ( ph -> N e. NN ) |
| 7 |
|
2z |
|- 2 e. ZZ |
| 8 |
7
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 9 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 10 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
| 11 |
10
|
fveq2i |
|- ( ZZ>= ` ( 2 - 1 ) ) = ( ZZ>= ` 1 ) |
| 12 |
9 11
|
eqtr4i |
|- NN = ( ZZ>= ` ( 2 - 1 ) ) |
| 13 |
2 12
|
eleqtrdi |
|- ( ph -> K e. ( ZZ>= ` ( 2 - 1 ) ) ) |
| 14 |
6 8 13
|
hashnzfz |
|- ( ph -> ( # ` ( ( || " { N } ) i^i ( 2 ... K ) ) ) = ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( 2 - 1 ) / N ) ) ) ) |
| 15 |
10
|
oveq1i |
|- ( ( 2 - 1 ) / N ) = ( 1 / N ) |
| 16 |
15
|
fveq2i |
|- ( |_ ` ( ( 2 - 1 ) / N ) ) = ( |_ ` ( 1 / N ) ) |
| 17 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 18 |
6
|
nnrecred |
|- ( ph -> ( 1 / N ) e. RR ) |
| 19 |
6
|
nnred |
|- ( ph -> N e. RR ) |
| 20 |
6
|
nngt0d |
|- ( ph -> 0 < N ) |
| 21 |
19 20
|
recgt0d |
|- ( ph -> 0 < ( 1 / N ) ) |
| 22 |
17 18 21
|
ltled |
|- ( ph -> 0 <_ ( 1 / N ) ) |
| 23 |
|
eluzle |
|- ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) |
| 24 |
1 23
|
syl |
|- ( ph -> 2 <_ N ) |
| 25 |
6
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 26 |
|
zlem1lt |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) |
| 27 |
7 25 26
|
sylancr |
|- ( ph -> ( 2 <_ N <-> ( 2 - 1 ) < N ) ) |
| 28 |
24 27
|
mpbid |
|- ( ph -> ( 2 - 1 ) < N ) |
| 29 |
10 28
|
eqbrtrrid |
|- ( ph -> 1 < N ) |
| 30 |
6
|
nnrpd |
|- ( ph -> N e. RR+ ) |
| 31 |
30
|
recgt1d |
|- ( ph -> ( 1 < N <-> ( 1 / N ) < 1 ) ) |
| 32 |
29 31
|
mpbid |
|- ( ph -> ( 1 / N ) < 1 ) |
| 33 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 34 |
32 33
|
breqtrrdi |
|- ( ph -> ( 1 / N ) < ( 0 + 1 ) ) |
| 35 |
|
0z |
|- 0 e. ZZ |
| 36 |
|
flbi |
|- ( ( ( 1 / N ) e. RR /\ 0 e. ZZ ) -> ( ( |_ ` ( 1 / N ) ) = 0 <-> ( 0 <_ ( 1 / N ) /\ ( 1 / N ) < ( 0 + 1 ) ) ) ) |
| 37 |
18 35 36
|
sylancl |
|- ( ph -> ( ( |_ ` ( 1 / N ) ) = 0 <-> ( 0 <_ ( 1 / N ) /\ ( 1 / N ) < ( 0 + 1 ) ) ) ) |
| 38 |
22 34 37
|
mpbir2and |
|- ( ph -> ( |_ ` ( 1 / N ) ) = 0 ) |
| 39 |
16 38
|
eqtrid |
|- ( ph -> ( |_ ` ( ( 2 - 1 ) / N ) ) = 0 ) |
| 40 |
39
|
oveq2d |
|- ( ph -> ( ( |_ ` ( K / N ) ) - ( |_ ` ( ( 2 - 1 ) / N ) ) ) = ( ( |_ ` ( K / N ) ) - 0 ) ) |
| 41 |
2
|
nnred |
|- ( ph -> K e. RR ) |
| 42 |
41 6
|
nndivred |
|- ( ph -> ( K / N ) e. RR ) |
| 43 |
42
|
flcld |
|- ( ph -> ( |_ ` ( K / N ) ) e. ZZ ) |
| 44 |
43
|
zcnd |
|- ( ph -> ( |_ ` ( K / N ) ) e. CC ) |
| 45 |
44
|
subid1d |
|- ( ph -> ( ( |_ ` ( K / N ) ) - 0 ) = ( |_ ` ( K / N ) ) ) |
| 46 |
14 40 45
|
3eqtrd |
|- ( ph -> ( # ` ( ( || " { N } ) i^i ( 2 ... K ) ) ) = ( |_ ` ( K / N ) ) ) |