Step |
Hyp |
Ref |
Expression |
1 |
|
hashp1i.1 |
|- A e. _om |
2 |
|
hashp1i.2 |
|- B = suc A |
3 |
|
hashp1i.3 |
|- ( # ` A ) = M |
4 |
|
hashp1i.4 |
|- ( M + 1 ) = N |
5 |
|
df-suc |
|- suc A = ( A u. { A } ) |
6 |
2 5
|
eqtri |
|- B = ( A u. { A } ) |
7 |
6
|
fveq2i |
|- ( # ` B ) = ( # ` ( A u. { A } ) ) |
8 |
|
nnfi |
|- ( A e. _om -> A e. Fin ) |
9 |
1 8
|
ax-mp |
|- A e. Fin |
10 |
|
nnord |
|- ( A e. _om -> Ord A ) |
11 |
|
ordirr |
|- ( Ord A -> -. A e. A ) |
12 |
1 10 11
|
mp2b |
|- -. A e. A |
13 |
|
hashunsng |
|- ( A e. _om -> ( ( A e. Fin /\ -. A e. A ) -> ( # ` ( A u. { A } ) ) = ( ( # ` A ) + 1 ) ) ) |
14 |
1 13
|
ax-mp |
|- ( ( A e. Fin /\ -. A e. A ) -> ( # ` ( A u. { A } ) ) = ( ( # ` A ) + 1 ) ) |
15 |
9 12 14
|
mp2an |
|- ( # ` ( A u. { A } ) ) = ( ( # ` A ) + 1 ) |
16 |
3
|
oveq1i |
|- ( ( # ` A ) + 1 ) = ( M + 1 ) |
17 |
16 4
|
eqtri |
|- ( ( # ` A ) + 1 ) = N |
18 |
15 17
|
eqtri |
|- ( # ` ( A u. { A } ) ) = N |
19 |
7 18
|
eqtri |
|- ( # ` B ) = N |