| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( A e. V /\ B e. W ) -> B e. W ) |
| 2 |
|
elsni |
|- ( B e. { A } -> B = A ) |
| 3 |
2
|
eqcomd |
|- ( B e. { A } -> A = B ) |
| 4 |
3
|
necon3ai |
|- ( A =/= B -> -. B e. { A } ) |
| 5 |
|
snfi |
|- { A } e. Fin |
| 6 |
|
hashunsng |
|- ( B e. W -> ( ( { A } e. Fin /\ -. B e. { A } ) -> ( # ` ( { A } u. { B } ) ) = ( ( # ` { A } ) + 1 ) ) ) |
| 7 |
6
|
imp |
|- ( ( B e. W /\ ( { A } e. Fin /\ -. B e. { A } ) ) -> ( # ` ( { A } u. { B } ) ) = ( ( # ` { A } ) + 1 ) ) |
| 8 |
5 7
|
mpanr1 |
|- ( ( B e. W /\ -. B e. { A } ) -> ( # ` ( { A } u. { B } ) ) = ( ( # ` { A } ) + 1 ) ) |
| 9 |
1 4 8
|
syl2an |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( # ` ( { A } u. { B } ) ) = ( ( # ` { A } ) + 1 ) ) |
| 10 |
|
hashsng |
|- ( A e. V -> ( # ` { A } ) = 1 ) |
| 11 |
10
|
adantr |
|- ( ( A e. V /\ B e. W ) -> ( # ` { A } ) = 1 ) |
| 12 |
11
|
adantr |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( # ` { A } ) = 1 ) |
| 13 |
12
|
oveq1d |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( ( # ` { A } ) + 1 ) = ( 1 + 1 ) ) |
| 14 |
9 13
|
eqtrd |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( # ` ( { A } u. { B } ) ) = ( 1 + 1 ) ) |
| 15 |
|
df-pr |
|- { A , B } = ( { A } u. { B } ) |
| 16 |
15
|
fveq2i |
|- ( # ` { A , B } ) = ( # ` ( { A } u. { B } ) ) |
| 17 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 18 |
14 16 17
|
3eqtr4g |
|- ( ( ( A e. V /\ B e. W ) /\ A =/= B ) -> ( # ` { A , B } ) = 2 ) |
| 19 |
|
1ne2 |
|- 1 =/= 2 |
| 20 |
19
|
a1i |
|- ( ( A e. V /\ B e. W ) -> 1 =/= 2 ) |
| 21 |
11 20
|
eqnetrd |
|- ( ( A e. V /\ B e. W ) -> ( # ` { A } ) =/= 2 ) |
| 22 |
|
dfsn2 |
|- { A } = { A , A } |
| 23 |
|
preq2 |
|- ( A = B -> { A , A } = { A , B } ) |
| 24 |
22 23
|
eqtr2id |
|- ( A = B -> { A , B } = { A } ) |
| 25 |
24
|
fveq2d |
|- ( A = B -> ( # ` { A , B } ) = ( # ` { A } ) ) |
| 26 |
25
|
neeq1d |
|- ( A = B -> ( ( # ` { A , B } ) =/= 2 <-> ( # ` { A } ) =/= 2 ) ) |
| 27 |
21 26
|
syl5ibrcom |
|- ( ( A e. V /\ B e. W ) -> ( A = B -> ( # ` { A , B } ) =/= 2 ) ) |
| 28 |
27
|
necon2d |
|- ( ( A e. V /\ B e. W ) -> ( ( # ` { A , B } ) = 2 -> A =/= B ) ) |
| 29 |
28
|
imp |
|- ( ( ( A e. V /\ B e. W ) /\ ( # ` { A , B } ) = 2 ) -> A =/= B ) |
| 30 |
18 29
|
impbida |
|- ( ( A e. V /\ B e. W ) -> ( A =/= B <-> ( # ` { A , B } ) = 2 ) ) |