| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  { x e. { A } | ph } = { x e. { A } | ph } | 
						
							| 2 |  | rabrsn |  |-  ( { x e. { A } | ph } = { x e. { A } | ph } -> ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) ) | 
						
							| 3 |  | fveqeq2 |  |-  ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = N <-> ( # ` (/) ) = N ) ) | 
						
							| 4 |  | eqcom |  |-  ( ( # ` (/) ) = N <-> N = ( # ` (/) ) ) | 
						
							| 5 | 4 | biimpi |  |-  ( ( # ` (/) ) = N -> N = ( # ` (/) ) ) | 
						
							| 6 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 7 | 5 6 | eqtrdi |  |-  ( ( # ` (/) ) = N -> N = 0 ) | 
						
							| 8 | 7 | orcd |  |-  ( ( # ` (/) ) = N -> ( N = 0 \/ N = 1 ) ) | 
						
							| 9 | 3 8 | biimtrdi |  |-  ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = N -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 10 |  | fveqeq2 |  |-  ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = N <-> ( # ` { A } ) = N ) ) | 
						
							| 11 |  | eqcom |  |-  ( ( # ` { A } ) = N <-> N = ( # ` { A } ) ) | 
						
							| 12 | 11 | biimpi |  |-  ( ( # ` { A } ) = N -> N = ( # ` { A } ) ) | 
						
							| 13 |  | hashsng |  |-  ( A e. _V -> ( # ` { A } ) = 1 ) | 
						
							| 14 | 12 13 | sylan9eqr |  |-  ( ( A e. _V /\ ( # ` { A } ) = N ) -> N = 1 ) | 
						
							| 15 | 14 | olcd |  |-  ( ( A e. _V /\ ( # ` { A } ) = N ) -> ( N = 0 \/ N = 1 ) ) | 
						
							| 16 | 15 | ex |  |-  ( A e. _V -> ( ( # ` { A } ) = N -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 17 |  | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | 
						
							| 18 |  | fveqeq2 |  |-  ( { A } = (/) -> ( ( # ` { A } ) = N <-> ( # ` (/) ) = N ) ) | 
						
							| 19 | 18 8 | biimtrdi |  |-  ( { A } = (/) -> ( ( # ` { A } ) = N -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 20 | 17 19 | sylbi |  |-  ( -. A e. _V -> ( ( # ` { A } ) = N -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 21 | 16 20 | pm2.61i |  |-  ( ( # ` { A } ) = N -> ( N = 0 \/ N = 1 ) ) | 
						
							| 22 | 10 21 | biimtrdi |  |-  ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = N -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 23 | 9 22 | jaoi |  |-  ( ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) -> ( ( # ` { x e. { A } | ph } ) = N -> ( N = 0 \/ N = 1 ) ) ) | 
						
							| 24 | 1 2 23 | mp2b |  |-  ( ( # ` { x e. { A } | ph } ) = N -> ( N = 0 \/ N = 1 ) ) |