| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  { x e. { A } | ph } = { x e. { A } | ph } | 
						
							| 2 |  | rabrsn |  |-  ( { x e. { A } | ph } = { x e. { A } | ph } -> ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) ) | 
						
							| 3 |  | fveqeq2 |  |-  ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = 1 <-> ( # ` (/) ) = 1 ) ) | 
						
							| 4 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 5 | 4 | eqeq1i |  |-  ( ( # ` (/) ) = 1 <-> 0 = 1 ) | 
						
							| 6 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 7 |  | eqneqall |  |-  ( 0 = 1 -> ( 0 =/= 1 -> [. A / x ]. ph ) ) | 
						
							| 8 | 6 7 | mpi |  |-  ( 0 = 1 -> [. A / x ]. ph ) | 
						
							| 9 | 5 8 | sylbi |  |-  ( ( # ` (/) ) = 1 -> [. A / x ]. ph ) | 
						
							| 10 | 3 9 | biimtrdi |  |-  ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) | 
						
							| 11 |  | snidg |  |-  ( A e. _V -> A e. { A } ) | 
						
							| 12 | 11 | adantr |  |-  ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> A e. { A } ) | 
						
							| 13 |  | eleq2 |  |-  ( { x e. { A } | ph } = { A } -> ( A e. { x e. { A } | ph } <-> A e. { A } ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> ( A e. { x e. { A } | ph } <-> A e. { A } ) ) | 
						
							| 15 | 12 14 | mpbird |  |-  ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> A e. { x e. { A } | ph } ) | 
						
							| 16 |  | nfcv |  |-  F/_ x { A } | 
						
							| 17 | 16 | elrabsf |  |-  ( A e. { x e. { A } | ph } <-> ( A e. { A } /\ [. A / x ]. ph ) ) | 
						
							| 18 | 17 | simprbi |  |-  ( A e. { x e. { A } | ph } -> [. A / x ]. ph ) | 
						
							| 19 | 15 18 | syl |  |-  ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> [. A / x ]. ph ) | 
						
							| 20 | 19 | a1d |  |-  ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) | 
						
							| 21 | 20 | ex |  |-  ( A e. _V -> ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) ) | 
						
							| 22 |  | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | 
						
							| 23 |  | eqeq2 |  |-  ( { A } = (/) -> ( { x e. { A } | ph } = { A } <-> { x e. { A } | ph } = (/) ) ) | 
						
							| 24 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 25 |  | eqneqall |  |-  ( 1 = 0 -> ( 1 =/= 0 -> [. A / x ]. ph ) ) | 
						
							| 26 | 24 25 | mpi |  |-  ( 1 = 0 -> [. A / x ]. ph ) | 
						
							| 27 | 26 | eqcoms |  |-  ( 0 = 1 -> [. A / x ]. ph ) | 
						
							| 28 | 5 27 | sylbi |  |-  ( ( # ` (/) ) = 1 -> [. A / x ]. ph ) | 
						
							| 29 | 3 28 | biimtrdi |  |-  ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) | 
						
							| 30 | 23 29 | biimtrdi |  |-  ( { A } = (/) -> ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) ) | 
						
							| 31 | 22 30 | sylbi |  |-  ( -. A e. _V -> ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) ) | 
						
							| 32 | 21 31 | pm2.61i |  |-  ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) | 
						
							| 33 | 10 32 | jaoi |  |-  ( ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) | 
						
							| 34 | 1 2 33 | mp2b |  |-  ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) |