Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- { x e. { A } | ph } = { x e. { A } | ph } |
2 |
|
rabrsn |
|- ( { x e. { A } | ph } = { x e. { A } | ph } -> ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) ) |
3 |
|
fveqeq2 |
|- ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = 1 <-> ( # ` (/) ) = 1 ) ) |
4 |
|
hash0 |
|- ( # ` (/) ) = 0 |
5 |
4
|
eqeq1i |
|- ( ( # ` (/) ) = 1 <-> 0 = 1 ) |
6 |
|
0ne1 |
|- 0 =/= 1 |
7 |
|
eqneqall |
|- ( 0 = 1 -> ( 0 =/= 1 -> [. A / x ]. ph ) ) |
8 |
6 7
|
mpi |
|- ( 0 = 1 -> [. A / x ]. ph ) |
9 |
5 8
|
sylbi |
|- ( ( # ` (/) ) = 1 -> [. A / x ]. ph ) |
10 |
3 9
|
syl6bi |
|- ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
11 |
|
snidg |
|- ( A e. _V -> A e. { A } ) |
12 |
11
|
adantr |
|- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> A e. { A } ) |
13 |
|
eleq2 |
|- ( { x e. { A } | ph } = { A } -> ( A e. { x e. { A } | ph } <-> A e. { A } ) ) |
14 |
13
|
adantl |
|- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> ( A e. { x e. { A } | ph } <-> A e. { A } ) ) |
15 |
12 14
|
mpbird |
|- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> A e. { x e. { A } | ph } ) |
16 |
|
nfcv |
|- F/_ x { A } |
17 |
16
|
elrabsf |
|- ( A e. { x e. { A } | ph } <-> ( A e. { A } /\ [. A / x ]. ph ) ) |
18 |
17
|
simprbi |
|- ( A e. { x e. { A } | ph } -> [. A / x ]. ph ) |
19 |
15 18
|
syl |
|- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> [. A / x ]. ph ) |
20 |
19
|
a1d |
|- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
21 |
20
|
ex |
|- ( A e. _V -> ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) ) |
22 |
|
snprc |
|- ( -. A e. _V <-> { A } = (/) ) |
23 |
|
eqeq2 |
|- ( { A } = (/) -> ( { x e. { A } | ph } = { A } <-> { x e. { A } | ph } = (/) ) ) |
24 |
|
ax-1ne0 |
|- 1 =/= 0 |
25 |
|
eqneqall |
|- ( 1 = 0 -> ( 1 =/= 0 -> [. A / x ]. ph ) ) |
26 |
24 25
|
mpi |
|- ( 1 = 0 -> [. A / x ]. ph ) |
27 |
26
|
eqcoms |
|- ( 0 = 1 -> [. A / x ]. ph ) |
28 |
5 27
|
sylbi |
|- ( ( # ` (/) ) = 1 -> [. A / x ]. ph ) |
29 |
3 28
|
syl6bi |
|- ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
30 |
23 29
|
syl6bi |
|- ( { A } = (/) -> ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) ) |
31 |
22 30
|
sylbi |
|- ( -. A e. _V -> ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) ) |
32 |
21 31
|
pm2.61i |
|- ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
33 |
10 32
|
jaoi |
|- ( ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
34 |
1 2 33
|
mp2b |
|- ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) |