Step |
Hyp |
Ref |
Expression |
1 |
|
hashrepr.a |
|- ( ph -> A C_ NN ) |
2 |
|
hashrepr.m |
|- ( ph -> M e. NN0 ) |
3 |
|
hashrepr.s |
|- ( ph -> S e. NN0 ) |
4 |
2
|
nn0zd |
|- ( ph -> M e. ZZ ) |
5 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
6 |
|
fz1ssnn |
|- ( 1 ... M ) C_ NN |
7 |
6
|
a1i |
|- ( ph -> ( 1 ... M ) C_ NN ) |
8 |
1 4 3 5 7
|
hashreprin |
|- ( ph -> ( # ` ( ( A i^i ( 1 ... M ) ) ( repr ` S ) M ) ) = sum_ c e. ( ( 1 ... M ) ( repr ` S ) M ) prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
9 |
2 3 1
|
reprinfz1 |
|- ( ph -> ( A ( repr ` S ) M ) = ( ( A i^i ( 1 ... M ) ) ( repr ` S ) M ) ) |
10 |
9
|
fveq2d |
|- ( ph -> ( # ` ( A ( repr ` S ) M ) ) = ( # ` ( ( A i^i ( 1 ... M ) ) ( repr ` S ) M ) ) ) |
11 |
2 3
|
reprfz1 |
|- ( ph -> ( NN ( repr ` S ) M ) = ( ( 1 ... M ) ( repr ` S ) M ) ) |
12 |
11
|
sumeq1d |
|- ( ph -> sum_ c e. ( NN ( repr ` S ) M ) prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) = sum_ c e. ( ( 1 ... M ) ( repr ` S ) M ) prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |
13 |
8 10 12
|
3eqtr4d |
|- ( ph -> ( # ` ( A ( repr ` S ) M ) ) = sum_ c e. ( NN ( repr ` S ) M ) prod_ a e. ( 0 ..^ S ) ( ( ( _Ind ` NN ) ` A ) ` ( c ` a ) ) ) |