| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funres |  |-  ( Fun A -> Fun ( A |` B ) ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> Fun ( A |` B ) ) | 
						
							| 3 |  | finresfin |  |-  ( A e. Fin -> ( A |` B ) e. Fin ) | 
						
							| 4 | 3 | 3ad2ant2 |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( A |` B ) e. Fin ) | 
						
							| 5 |  | hashfun |  |-  ( ( A |` B ) e. Fin -> ( Fun ( A |` B ) <-> ( # ` ( A |` B ) ) = ( # ` dom ( A |` B ) ) ) ) | 
						
							| 6 | 4 5 | syl |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( Fun ( A |` B ) <-> ( # ` ( A |` B ) ) = ( # ` dom ( A |` B ) ) ) ) | 
						
							| 7 | 2 6 | mpbid |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` ( A |` B ) ) = ( # ` dom ( A |` B ) ) ) | 
						
							| 8 |  | ssdmres |  |-  ( B C_ dom A <-> dom ( A |` B ) = B ) | 
						
							| 9 | 8 | biimpi |  |-  ( B C_ dom A -> dom ( A |` B ) = B ) | 
						
							| 10 | 9 | 3ad2ant3 |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> dom ( A |` B ) = B ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` dom ( A |` B ) ) = ( # ` B ) ) | 
						
							| 12 | 7 11 | eqtrd |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` ( A |` B ) ) = ( # ` B ) ) |