Step |
Hyp |
Ref |
Expression |
1 |
|
hashf |
|- # : _V --> ( NN0 u. { +oo } ) |
2 |
|
ffn |
|- ( # : _V --> ( NN0 u. { +oo } ) -> # Fn _V ) |
3 |
|
fnresin2 |
|- ( # Fn _V -> ( # |` ( A i^i _V ) ) Fn ( A i^i _V ) ) |
4 |
1 2 3
|
mp2b |
|- ( # |` ( A i^i _V ) ) Fn ( A i^i _V ) |
5 |
|
inv1 |
|- ( A i^i _V ) = A |
6 |
5
|
reseq2i |
|- ( # |` ( A i^i _V ) ) = ( # |` A ) |
7 |
|
fneq12 |
|- ( ( ( # |` ( A i^i _V ) ) = ( # |` A ) /\ ( A i^i _V ) = A ) -> ( ( # |` ( A i^i _V ) ) Fn ( A i^i _V ) <-> ( # |` A ) Fn A ) ) |
8 |
6 5 7
|
mp2an |
|- ( ( # |` ( A i^i _V ) ) Fn ( A i^i _V ) <-> ( # |` A ) Fn A ) |
9 |
4 8
|
mpbi |
|- ( # |` A ) Fn A |