| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> Fun A ) | 
						
							| 2 |  | hashfun |  |-  ( A e. Fin -> ( Fun A <-> ( # ` A ) = ( # ` dom A ) ) ) | 
						
							| 3 | 2 | 3ad2ant2 |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( Fun A <-> ( # ` A ) = ( # ` dom A ) ) ) | 
						
							| 4 | 1 3 | mpbid |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` A ) = ( # ` dom A ) ) | 
						
							| 5 |  | dmfi |  |-  ( A e. Fin -> dom A e. Fin ) | 
						
							| 6 | 5 | anim1i |  |-  ( ( A e. Fin /\ B C_ dom A ) -> ( dom A e. Fin /\ B C_ dom A ) ) | 
						
							| 7 | 6 | 3adant1 |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( dom A e. Fin /\ B C_ dom A ) ) | 
						
							| 8 |  | hashssdif |  |-  ( ( dom A e. Fin /\ B C_ dom A ) -> ( # ` ( dom A \ B ) ) = ( ( # ` dom A ) - ( # ` B ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` ( dom A \ B ) ) = ( ( # ` dom A ) - ( # ` B ) ) ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) + ( # ` ( dom A \ B ) ) ) = ( ( # ` B ) + ( ( # ` dom A ) - ( # ` B ) ) ) ) | 
						
							| 11 |  | ssfi |  |-  ( ( dom A e. Fin /\ B C_ dom A ) -> B e. Fin ) | 
						
							| 12 | 11 | ex |  |-  ( dom A e. Fin -> ( B C_ dom A -> B e. Fin ) ) | 
						
							| 13 |  | hashcl |  |-  ( B e. Fin -> ( # ` B ) e. NN0 ) | 
						
							| 14 | 13 | nn0cnd |  |-  ( B e. Fin -> ( # ` B ) e. CC ) | 
						
							| 15 | 12 14 | syl6 |  |-  ( dom A e. Fin -> ( B C_ dom A -> ( # ` B ) e. CC ) ) | 
						
							| 16 | 5 15 | syl |  |-  ( A e. Fin -> ( B C_ dom A -> ( # ` B ) e. CC ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( A e. Fin /\ B C_ dom A ) -> ( # ` B ) e. CC ) | 
						
							| 18 |  | hashcl |  |-  ( dom A e. Fin -> ( # ` dom A ) e. NN0 ) | 
						
							| 19 | 5 18 | syl |  |-  ( A e. Fin -> ( # ` dom A ) e. NN0 ) | 
						
							| 20 | 19 | nn0cnd |  |-  ( A e. Fin -> ( # ` dom A ) e. CC ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A e. Fin /\ B C_ dom A ) -> ( # ` dom A ) e. CC ) | 
						
							| 22 | 17 21 | jca |  |-  ( ( A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) e. CC /\ ( # ` dom A ) e. CC ) ) | 
						
							| 23 | 22 | 3adant1 |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) e. CC /\ ( # ` dom A ) e. CC ) ) | 
						
							| 24 |  | pncan3 |  |-  ( ( ( # ` B ) e. CC /\ ( # ` dom A ) e. CC ) -> ( ( # ` B ) + ( ( # ` dom A ) - ( # ` B ) ) ) = ( # ` dom A ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) + ( ( # ` dom A ) - ( # ` B ) ) ) = ( # ` dom A ) ) | 
						
							| 26 | 10 25 | eqtr2d |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` dom A ) = ( ( # ` B ) + ( # ` ( dom A \ B ) ) ) ) | 
						
							| 27 |  | hashres |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` ( A |` B ) ) = ( # ` B ) ) | 
						
							| 28 | 27 | eqcomd |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` B ) = ( # ` ( A |` B ) ) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( ( # ` B ) + ( # ` ( dom A \ B ) ) ) = ( ( # ` ( A |` B ) ) + ( # ` ( dom A \ B ) ) ) ) | 
						
							| 30 | 4 26 29 | 3eqtrd |  |-  ( ( Fun A /\ A e. Fin /\ B C_ dom A ) -> ( # ` A ) = ( ( # ` ( A |` B ) ) + ( # ` ( dom A \ B ) ) ) ) |