Metamath Proof Explorer


Theorem hashsn01

Description: The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021)

Ref Expression
Assertion hashsn01
|- ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 )

Proof

Step Hyp Ref Expression
1 hashsng
 |-  ( A e. _V -> ( # ` { A } ) = 1 )
2 1 olcd
 |-  ( A e. _V -> ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) )
3 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
4 3 biimpi
 |-  ( -. A e. _V -> { A } = (/) )
5 4 fveq2d
 |-  ( -. A e. _V -> ( # ` { A } ) = ( # ` (/) ) )
6 hash0
 |-  ( # ` (/) ) = 0
7 5 6 eqtrdi
 |-  ( -. A e. _V -> ( # ` { A } ) = 0 )
8 7 orcd
 |-  ( -. A e. _V -> ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) )
9 2 8 pm2.61i
 |-  ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 )