Description: The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashsn01 | |- ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hashsng |  |-  ( A e. _V -> ( # ` { A } ) = 1 ) | |
| 2 | 1 | olcd |  |-  ( A e. _V -> ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) ) | 
| 3 | snprc |  |-  ( -. A e. _V <-> { A } = (/) ) | |
| 4 | 3 | biimpi |  |-  ( -. A e. _V -> { A } = (/) ) | 
| 5 | 4 | fveq2d |  |-  ( -. A e. _V -> ( # ` { A } ) = ( # ` (/) ) ) | 
| 6 | hash0 | |- ( # ` (/) ) = 0 | |
| 7 | 5 6 | eqtrdi |  |-  ( -. A e. _V -> ( # ` { A } ) = 0 ) | 
| 8 | 7 | orcd |  |-  ( -. A e. _V -> ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) ) | 
| 9 | 2 8 | pm2.61i |  |-  ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) |