Description: The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | hashsn01 | |- ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashsng | |- ( A e. _V -> ( # ` { A } ) = 1 ) |
|
2 | 1 | olcd | |- ( A e. _V -> ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) ) |
3 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
4 | 3 | biimpi | |- ( -. A e. _V -> { A } = (/) ) |
5 | 4 | fveq2d | |- ( -. A e. _V -> ( # ` { A } ) = ( # ` (/) ) ) |
6 | hash0 | |- ( # ` (/) ) = 0 |
|
7 | 5 6 | eqtrdi | |- ( -. A e. _V -> ( # ` { A } ) = 0 ) |
8 | 7 | orcd | |- ( -. A e. _V -> ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) ) |
9 | 2 8 | pm2.61i | |- ( ( # ` { A } ) = 0 \/ ( # ` { A } ) = 1 ) |