| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
|- 1 e. ZZ |
| 2 |
|
en2sn |
|- ( ( A e. V /\ 1 e. ZZ ) -> { A } ~~ { 1 } ) |
| 3 |
1 2
|
mpan2 |
|- ( A e. V -> { A } ~~ { 1 } ) |
| 4 |
|
snfi |
|- { A } e. Fin |
| 5 |
|
snfi |
|- { 1 } e. Fin |
| 6 |
|
hashen |
|- ( ( { A } e. Fin /\ { 1 } e. Fin ) -> ( ( # ` { A } ) = ( # ` { 1 } ) <-> { A } ~~ { 1 } ) ) |
| 7 |
4 5 6
|
mp2an |
|- ( ( # ` { A } ) = ( # ` { 1 } ) <-> { A } ~~ { 1 } ) |
| 8 |
3 7
|
sylibr |
|- ( A e. V -> ( # ` { A } ) = ( # ` { 1 } ) ) |
| 9 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 10 |
9
|
fveq2d |
|- ( 1 e. ZZ -> ( # ` ( 1 ... 1 ) ) = ( # ` { 1 } ) ) |
| 11 |
|
1nn0 |
|- 1 e. NN0 |
| 12 |
|
hashfz1 |
|- ( 1 e. NN0 -> ( # ` ( 1 ... 1 ) ) = 1 ) |
| 13 |
11 12
|
ax-mp |
|- ( # ` ( 1 ... 1 ) ) = 1 |
| 14 |
10 13
|
eqtr3di |
|- ( 1 e. ZZ -> ( # ` { 1 } ) = 1 ) |
| 15 |
1 14
|
ax-mp |
|- ( # ` { 1 } ) = 1 |
| 16 |
8 15
|
eqtrdi |
|- ( A e. V -> ( # ` { A } ) = 1 ) |