Metamath Proof Explorer


Theorem hashsnlei

Description: Get an upper bound on a concretely specified finite set. Base case: singleton set. (Contributed by Mario Carneiro, 11-Feb-2015) (Proof shortened by AV, 23-Feb-2021)

Ref Expression
Assertion hashsnlei
|- ( { A } e. Fin /\ ( # ` { A } ) <_ 1 )

Proof

Step Hyp Ref Expression
1 snfi
 |-  { A } e. Fin
2 hashsnle1
 |-  ( # ` { A } ) <_ 1
3 1 2 pm3.2i
 |-  ( { A } e. Fin /\ ( # ` { A } ) <_ 1 )