Step |
Hyp |
Ref |
Expression |
1 |
|
ssfi |
|- ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) |
2 |
|
diffi |
|- ( A e. Fin -> ( A \ B ) e. Fin ) |
3 |
|
disjdif |
|- ( B i^i ( A \ B ) ) = (/) |
4 |
|
hashun |
|- ( ( B e. Fin /\ ( A \ B ) e. Fin /\ ( B i^i ( A \ B ) ) = (/) ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
5 |
3 4
|
mp3an3 |
|- ( ( B e. Fin /\ ( A \ B ) e. Fin ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
6 |
1 2 5
|
syl2an |
|- ( ( ( A e. Fin /\ B C_ A ) /\ A e. Fin ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
7 |
6
|
anabss1 |
|- ( ( A e. Fin /\ B C_ A ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
8 |
|
undif |
|- ( B C_ A <-> ( B u. ( A \ B ) ) = A ) |
9 |
8
|
biimpi |
|- ( B C_ A -> ( B u. ( A \ B ) ) = A ) |
10 |
9
|
fveqeq2d |
|- ( B C_ A -> ( ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) <-> ( # ` A ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) ) |
11 |
10
|
adantl |
|- ( ( A e. Fin /\ B C_ A ) -> ( ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) <-> ( # ` A ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) ) |
12 |
7 11
|
mpbid |
|- ( ( A e. Fin /\ B C_ A ) -> ( # ` A ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) |
13 |
12
|
eqcomd |
|- ( ( A e. Fin /\ B C_ A ) -> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) |
14 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
15 |
14
|
nn0cnd |
|- ( A e. Fin -> ( # ` A ) e. CC ) |
16 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
17 |
1 16
|
syl |
|- ( ( A e. Fin /\ B C_ A ) -> ( # ` B ) e. NN0 ) |
18 |
17
|
nn0cnd |
|- ( ( A e. Fin /\ B C_ A ) -> ( # ` B ) e. CC ) |
19 |
|
hashcl |
|- ( ( A \ B ) e. Fin -> ( # ` ( A \ B ) ) e. NN0 ) |
20 |
2 19
|
syl |
|- ( A e. Fin -> ( # ` ( A \ B ) ) e. NN0 ) |
21 |
20
|
nn0cnd |
|- ( A e. Fin -> ( # ` ( A \ B ) ) e. CC ) |
22 |
|
subadd |
|- ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC /\ ( # ` ( A \ B ) ) e. CC ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) |
23 |
15 18 21 22
|
syl3an |
|- ( ( A e. Fin /\ ( A e. Fin /\ B C_ A ) /\ A e. Fin ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) |
24 |
23
|
3anidm13 |
|- ( ( A e. Fin /\ ( A e. Fin /\ B C_ A ) ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) |
25 |
24
|
anabss5 |
|- ( ( A e. Fin /\ B C_ A ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) |
26 |
13 25
|
mpbird |
|- ( ( A e. Fin /\ B C_ A ) -> ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) ) |
27 |
26
|
eqcomd |
|- ( ( A e. Fin /\ B C_ A ) -> ( # ` ( A \ B ) ) = ( ( # ` A ) - ( # ` B ) ) ) |