| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ssfi |  |-  ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) | 
						
							| 2 |  | diffi |  |-  ( A e. Fin -> ( A \ B ) e. Fin ) | 
						
							| 3 |  | disjdif |  |-  ( B i^i ( A \ B ) ) = (/) | 
						
							| 4 |  | hashun |  |-  ( ( B e. Fin /\ ( A \ B ) e. Fin /\ ( B i^i ( A \ B ) ) = (/) ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) | 
						
							| 5 | 3 4 | mp3an3 |  |-  ( ( B e. Fin /\ ( A \ B ) e. Fin ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) | 
						
							| 6 | 1 2 5 | syl2an |  |-  ( ( ( A e. Fin /\ B C_ A ) /\ A e. Fin ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) | 
						
							| 7 | 6 | anabss1 |  |-  ( ( A e. Fin /\ B C_ A ) -> ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) | 
						
							| 8 |  | undif |  |-  ( B C_ A <-> ( B u. ( A \ B ) ) = A ) | 
						
							| 9 | 8 | biimpi |  |-  ( B C_ A -> ( B u. ( A \ B ) ) = A ) | 
						
							| 10 | 9 | fveqeq2d |  |-  ( B C_ A -> ( ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) <-> ( # ` A ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( A e. Fin /\ B C_ A ) -> ( ( # ` ( B u. ( A \ B ) ) ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) <-> ( # ` A ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) ) | 
						
							| 12 | 7 11 | mpbid |  |-  ( ( A e. Fin /\ B C_ A ) -> ( # ` A ) = ( ( # ` B ) + ( # ` ( A \ B ) ) ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( A e. Fin /\ B C_ A ) -> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) | 
						
							| 14 |  | hashcl |  |-  ( A e. Fin -> ( # ` A ) e. NN0 ) | 
						
							| 15 | 14 | nn0cnd |  |-  ( A e. Fin -> ( # ` A ) e. CC ) | 
						
							| 16 |  | hashcl |  |-  ( B e. Fin -> ( # ` B ) e. NN0 ) | 
						
							| 17 | 1 16 | syl |  |-  ( ( A e. Fin /\ B C_ A ) -> ( # ` B ) e. NN0 ) | 
						
							| 18 | 17 | nn0cnd |  |-  ( ( A e. Fin /\ B C_ A ) -> ( # ` B ) e. CC ) | 
						
							| 19 |  | hashcl |  |-  ( ( A \ B ) e. Fin -> ( # ` ( A \ B ) ) e. NN0 ) | 
						
							| 20 | 2 19 | syl |  |-  ( A e. Fin -> ( # ` ( A \ B ) ) e. NN0 ) | 
						
							| 21 | 20 | nn0cnd |  |-  ( A e. Fin -> ( # ` ( A \ B ) ) e. CC ) | 
						
							| 22 |  | subadd |  |-  ( ( ( # ` A ) e. CC /\ ( # ` B ) e. CC /\ ( # ` ( A \ B ) ) e. CC ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) | 
						
							| 23 | 15 18 21 22 | syl3an |  |-  ( ( A e. Fin /\ ( A e. Fin /\ B C_ A ) /\ A e. Fin ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) | 
						
							| 24 | 23 | 3anidm13 |  |-  ( ( A e. Fin /\ ( A e. Fin /\ B C_ A ) ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) | 
						
							| 25 | 24 | anabss5 |  |-  ( ( A e. Fin /\ B C_ A ) -> ( ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) <-> ( ( # ` B ) + ( # ` ( A \ B ) ) ) = ( # ` A ) ) ) | 
						
							| 26 | 13 25 | mpbird |  |-  ( ( A e. Fin /\ B C_ A ) -> ( ( # ` A ) - ( # ` B ) ) = ( # ` ( A \ B ) ) ) | 
						
							| 27 | 26 | eqcomd |  |-  ( ( A e. Fin /\ B C_ A ) -> ( # ` ( A \ B ) ) = ( ( # ` A ) - ( # ` B ) ) ) |