Step |
Hyp |
Ref |
Expression |
1 |
|
hashsslei.b |
|- B C_ A |
2 |
|
hashsslei.a |
|- ( A e. Fin /\ ( # ` A ) <_ N ) |
3 |
|
hashsslei.n |
|- N e. NN0 |
4 |
2
|
simpli |
|- A e. Fin |
5 |
|
ssfi |
|- ( ( A e. Fin /\ B C_ A ) -> B e. Fin ) |
6 |
4 1 5
|
mp2an |
|- B e. Fin |
7 |
|
ssdomg |
|- ( A e. Fin -> ( B C_ A -> B ~<_ A ) ) |
8 |
4 1 7
|
mp2 |
|- B ~<_ A |
9 |
|
hashdom |
|- ( ( B e. Fin /\ A e. Fin ) -> ( ( # ` B ) <_ ( # ` A ) <-> B ~<_ A ) ) |
10 |
6 4 9
|
mp2an |
|- ( ( # ` B ) <_ ( # ` A ) <-> B ~<_ A ) |
11 |
8 10
|
mpbir |
|- ( # ` B ) <_ ( # ` A ) |
12 |
2
|
simpri |
|- ( # ` A ) <_ N |
13 |
|
hashcl |
|- ( B e. Fin -> ( # ` B ) e. NN0 ) |
14 |
6 13
|
ax-mp |
|- ( # ` B ) e. NN0 |
15 |
14
|
nn0rei |
|- ( # ` B ) e. RR |
16 |
|
hashcl |
|- ( A e. Fin -> ( # ` A ) e. NN0 ) |
17 |
4 16
|
ax-mp |
|- ( # ` A ) e. NN0 |
18 |
17
|
nn0rei |
|- ( # ` A ) e. RR |
19 |
3
|
nn0rei |
|- N e. RR |
20 |
15 18 19
|
letri |
|- ( ( ( # ` B ) <_ ( # ` A ) /\ ( # ` A ) <_ N ) -> ( # ` B ) <_ N ) |
21 |
11 12 20
|
mp2an |
|- ( # ` B ) <_ N |
22 |
6 21
|
pm3.2i |
|- ( B e. Fin /\ ( # ` B ) <_ N ) |