Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> C e. W ) |
2 |
|
prfi |
|- { A , B } e. Fin |
3 |
2
|
a1i |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> { A , B } e. Fin ) |
4 |
|
elprg |
|- ( C e. W -> ( C e. { A , B } <-> ( C = A \/ C = B ) ) ) |
5 |
|
orcom |
|- ( ( C = A \/ C = B ) <-> ( C = B \/ C = A ) ) |
6 |
|
nne |
|- ( -. B =/= C <-> B = C ) |
7 |
|
eqcom |
|- ( B = C <-> C = B ) |
8 |
6 7
|
bitr2i |
|- ( C = B <-> -. B =/= C ) |
9 |
|
nne |
|- ( -. C =/= A <-> C = A ) |
10 |
9
|
bicomi |
|- ( C = A <-> -. C =/= A ) |
11 |
8 10
|
orbi12i |
|- ( ( C = B \/ C = A ) <-> ( -. B =/= C \/ -. C =/= A ) ) |
12 |
5 11
|
bitri |
|- ( ( C = A \/ C = B ) <-> ( -. B =/= C \/ -. C =/= A ) ) |
13 |
4 12
|
bitrdi |
|- ( C e. W -> ( C e. { A , B } <-> ( -. B =/= C \/ -. C =/= A ) ) ) |
14 |
13
|
biimpd |
|- ( C e. W -> ( C e. { A , B } -> ( -. B =/= C \/ -. C =/= A ) ) ) |
15 |
14
|
3ad2ant3 |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( C e. { A , B } -> ( -. B =/= C \/ -. C =/= A ) ) ) |
16 |
15
|
imp |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ C e. { A , B } ) -> ( -. B =/= C \/ -. C =/= A ) ) |
17 |
16
|
olcd |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ C e. { A , B } ) -> ( -. A =/= B \/ ( -. B =/= C \/ -. C =/= A ) ) ) |
18 |
17
|
ex |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( C e. { A , B } -> ( -. A =/= B \/ ( -. B =/= C \/ -. C =/= A ) ) ) ) |
19 |
|
3orass |
|- ( ( -. A =/= B \/ -. B =/= C \/ -. C =/= A ) <-> ( -. A =/= B \/ ( -. B =/= C \/ -. C =/= A ) ) ) |
20 |
18 19
|
syl6ibr |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( C e. { A , B } -> ( -. A =/= B \/ -. B =/= C \/ -. C =/= A ) ) ) |
21 |
|
3ianor |
|- ( -. ( A =/= B /\ B =/= C /\ C =/= A ) <-> ( -. A =/= B \/ -. B =/= C \/ -. C =/= A ) ) |
22 |
20 21
|
syl6ibr |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( C e. { A , B } -> -. ( A =/= B /\ B =/= C /\ C =/= A ) ) ) |
23 |
22
|
con2d |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( ( A =/= B /\ B =/= C /\ C =/= A ) -> -. C e. { A , B } ) ) |
24 |
23
|
imp |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> -. C e. { A , B } ) |
25 |
|
hashunsng |
|- ( C e. W -> ( ( { A , B } e. Fin /\ -. C e. { A , B } ) -> ( # ` ( { A , B } u. { C } ) ) = ( ( # ` { A , B } ) + 1 ) ) ) |
26 |
25
|
imp |
|- ( ( C e. W /\ ( { A , B } e. Fin /\ -. C e. { A , B } ) ) -> ( # ` ( { A , B } u. { C } ) ) = ( ( # ` { A , B } ) + 1 ) ) |
27 |
1 3 24 26
|
syl12anc |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> ( # ` ( { A , B } u. { C } ) ) = ( ( # ` { A , B } ) + 1 ) ) |
28 |
|
simpr1 |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> A =/= B ) |
29 |
|
3simpa |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( A e. U /\ B e. V ) ) |
30 |
29
|
adantr |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> ( A e. U /\ B e. V ) ) |
31 |
|
hashprg |
|- ( ( A e. U /\ B e. V ) -> ( A =/= B <-> ( # ` { A , B } ) = 2 ) ) |
32 |
30 31
|
syl |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> ( A =/= B <-> ( # ` { A , B } ) = 2 ) ) |
33 |
28 32
|
mpbid |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> ( # ` { A , B } ) = 2 ) |
34 |
33
|
oveq1d |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> ( ( # ` { A , B } ) + 1 ) = ( 2 + 1 ) ) |
35 |
27 34
|
eqtrd |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> ( # ` ( { A , B } u. { C } ) ) = ( 2 + 1 ) ) |
36 |
|
df-tp |
|- { A , B , C } = ( { A , B } u. { C } ) |
37 |
36
|
fveq2i |
|- ( # ` { A , B , C } ) = ( # ` ( { A , B } u. { C } ) ) |
38 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
39 |
35 37 38
|
3eqtr4g |
|- ( ( ( A e. U /\ B e. V /\ C e. W ) /\ ( A =/= B /\ B =/= C /\ C =/= A ) ) -> ( # ` { A , B , C } ) = 3 ) |
40 |
39
|
ex |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( ( A =/= B /\ B =/= C /\ C =/= A ) -> ( # ` { A , B , C } ) = 3 ) ) |
41 |
|
nne |
|- ( -. A =/= B <-> A = B ) |
42 |
|
hashprlei |
|- ( { B , C } e. Fin /\ ( # ` { B , C } ) <_ 2 ) |
43 |
|
prfi |
|- { B , C } e. Fin |
44 |
|
hashcl |
|- ( { B , C } e. Fin -> ( # ` { B , C } ) e. NN0 ) |
45 |
44
|
nn0zd |
|- ( { B , C } e. Fin -> ( # ` { B , C } ) e. ZZ ) |
46 |
43 45
|
ax-mp |
|- ( # ` { B , C } ) e. ZZ |
47 |
|
2z |
|- 2 e. ZZ |
48 |
|
zleltp1 |
|- ( ( ( # ` { B , C } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { B , C } ) <_ 2 <-> ( # ` { B , C } ) < ( 2 + 1 ) ) ) |
49 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
50 |
49
|
a1i |
|- ( ( ( # ` { B , C } ) e. ZZ /\ 2 e. ZZ ) -> ( 2 + 1 ) = 3 ) |
51 |
50
|
breq2d |
|- ( ( ( # ` { B , C } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { B , C } ) < ( 2 + 1 ) <-> ( # ` { B , C } ) < 3 ) ) |
52 |
51
|
biimpd |
|- ( ( ( # ` { B , C } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { B , C } ) < ( 2 + 1 ) -> ( # ` { B , C } ) < 3 ) ) |
53 |
48 52
|
sylbid |
|- ( ( ( # ` { B , C } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { B , C } ) <_ 2 -> ( # ` { B , C } ) < 3 ) ) |
54 |
46 47 53
|
mp2an |
|- ( ( # ` { B , C } ) <_ 2 -> ( # ` { B , C } ) < 3 ) |
55 |
44
|
nn0red |
|- ( { B , C } e. Fin -> ( # ` { B , C } ) e. RR ) |
56 |
43 55
|
ax-mp |
|- ( # ` { B , C } ) e. RR |
57 |
|
3re |
|- 3 e. RR |
58 |
56 57
|
ltnei |
|- ( ( # ` { B , C } ) < 3 -> 3 =/= ( # ` { B , C } ) ) |
59 |
54 58
|
syl |
|- ( ( # ` { B , C } ) <_ 2 -> 3 =/= ( # ` { B , C } ) ) |
60 |
59
|
necomd |
|- ( ( # ` { B , C } ) <_ 2 -> ( # ` { B , C } ) =/= 3 ) |
61 |
60
|
adantl |
|- ( ( { B , C } e. Fin /\ ( # ` { B , C } ) <_ 2 ) -> ( # ` { B , C } ) =/= 3 ) |
62 |
42 61
|
mp1i |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { B , C } ) =/= 3 ) |
63 |
|
tpeq1 |
|- ( A = B -> { A , B , C } = { B , B , C } ) |
64 |
|
tpidm12 |
|- { B , B , C } = { B , C } |
65 |
63 64
|
eqtr2di |
|- ( A = B -> { B , C } = { A , B , C } ) |
66 |
65
|
fveq2d |
|- ( A = B -> ( # ` { B , C } ) = ( # ` { A , B , C } ) ) |
67 |
66
|
neeq1d |
|- ( A = B -> ( ( # ` { B , C } ) =/= 3 <-> ( # ` { A , B , C } ) =/= 3 ) ) |
68 |
62 67
|
syl5ib |
|- ( A = B -> ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , B , C } ) =/= 3 ) ) |
69 |
41 68
|
sylbi |
|- ( -. A =/= B -> ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , B , C } ) =/= 3 ) ) |
70 |
|
hashprlei |
|- ( { A , C } e. Fin /\ ( # ` { A , C } ) <_ 2 ) |
71 |
|
prfi |
|- { A , C } e. Fin |
72 |
|
hashcl |
|- ( { A , C } e. Fin -> ( # ` { A , C } ) e. NN0 ) |
73 |
72
|
nn0zd |
|- ( { A , C } e. Fin -> ( # ` { A , C } ) e. ZZ ) |
74 |
71 73
|
ax-mp |
|- ( # ` { A , C } ) e. ZZ |
75 |
|
zleltp1 |
|- ( ( ( # ` { A , C } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { A , C } ) <_ 2 <-> ( # ` { A , C } ) < ( 2 + 1 ) ) ) |
76 |
49
|
a1i |
|- ( ( ( # ` { A , C } ) e. ZZ /\ 2 e. ZZ ) -> ( 2 + 1 ) = 3 ) |
77 |
76
|
breq2d |
|- ( ( ( # ` { A , C } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { A , C } ) < ( 2 + 1 ) <-> ( # ` { A , C } ) < 3 ) ) |
78 |
77
|
biimpd |
|- ( ( ( # ` { A , C } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { A , C } ) < ( 2 + 1 ) -> ( # ` { A , C } ) < 3 ) ) |
79 |
75 78
|
sylbid |
|- ( ( ( # ` { A , C } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { A , C } ) <_ 2 -> ( # ` { A , C } ) < 3 ) ) |
80 |
74 47 79
|
mp2an |
|- ( ( # ` { A , C } ) <_ 2 -> ( # ` { A , C } ) < 3 ) |
81 |
72
|
nn0red |
|- ( { A , C } e. Fin -> ( # ` { A , C } ) e. RR ) |
82 |
71 81
|
ax-mp |
|- ( # ` { A , C } ) e. RR |
83 |
82 57
|
ltnei |
|- ( ( # ` { A , C } ) < 3 -> 3 =/= ( # ` { A , C } ) ) |
84 |
80 83
|
syl |
|- ( ( # ` { A , C } ) <_ 2 -> 3 =/= ( # ` { A , C } ) ) |
85 |
84
|
necomd |
|- ( ( # ` { A , C } ) <_ 2 -> ( # ` { A , C } ) =/= 3 ) |
86 |
85
|
adantl |
|- ( ( { A , C } e. Fin /\ ( # ` { A , C } ) <_ 2 ) -> ( # ` { A , C } ) =/= 3 ) |
87 |
70 86
|
mp1i |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , C } ) =/= 3 ) |
88 |
|
tpeq2 |
|- ( B = C -> { A , B , C } = { A , C , C } ) |
89 |
|
tpidm23 |
|- { A , C , C } = { A , C } |
90 |
88 89
|
eqtr2di |
|- ( B = C -> { A , C } = { A , B , C } ) |
91 |
90
|
fveq2d |
|- ( B = C -> ( # ` { A , C } ) = ( # ` { A , B , C } ) ) |
92 |
91
|
neeq1d |
|- ( B = C -> ( ( # ` { A , C } ) =/= 3 <-> ( # ` { A , B , C } ) =/= 3 ) ) |
93 |
87 92
|
syl5ib |
|- ( B = C -> ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , B , C } ) =/= 3 ) ) |
94 |
6 93
|
sylbi |
|- ( -. B =/= C -> ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , B , C } ) =/= 3 ) ) |
95 |
|
hashprlei |
|- ( { A , B } e. Fin /\ ( # ` { A , B } ) <_ 2 ) |
96 |
|
hashcl |
|- ( { A , B } e. Fin -> ( # ` { A , B } ) e. NN0 ) |
97 |
96
|
nn0zd |
|- ( { A , B } e. Fin -> ( # ` { A , B } ) e. ZZ ) |
98 |
2 97
|
ax-mp |
|- ( # ` { A , B } ) e. ZZ |
99 |
|
zleltp1 |
|- ( ( ( # ` { A , B } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { A , B } ) <_ 2 <-> ( # ` { A , B } ) < ( 2 + 1 ) ) ) |
100 |
49
|
a1i |
|- ( ( ( # ` { A , B } ) e. ZZ /\ 2 e. ZZ ) -> ( 2 + 1 ) = 3 ) |
101 |
100
|
breq2d |
|- ( ( ( # ` { A , B } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { A , B } ) < ( 2 + 1 ) <-> ( # ` { A , B } ) < 3 ) ) |
102 |
101
|
biimpd |
|- ( ( ( # ` { A , B } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { A , B } ) < ( 2 + 1 ) -> ( # ` { A , B } ) < 3 ) ) |
103 |
99 102
|
sylbid |
|- ( ( ( # ` { A , B } ) e. ZZ /\ 2 e. ZZ ) -> ( ( # ` { A , B } ) <_ 2 -> ( # ` { A , B } ) < 3 ) ) |
104 |
98 47 103
|
mp2an |
|- ( ( # ` { A , B } ) <_ 2 -> ( # ` { A , B } ) < 3 ) |
105 |
96
|
nn0red |
|- ( { A , B } e. Fin -> ( # ` { A , B } ) e. RR ) |
106 |
2 105
|
ax-mp |
|- ( # ` { A , B } ) e. RR |
107 |
106 57
|
ltnei |
|- ( ( # ` { A , B } ) < 3 -> 3 =/= ( # ` { A , B } ) ) |
108 |
104 107
|
syl |
|- ( ( # ` { A , B } ) <_ 2 -> 3 =/= ( # ` { A , B } ) ) |
109 |
108
|
necomd |
|- ( ( # ` { A , B } ) <_ 2 -> ( # ` { A , B } ) =/= 3 ) |
110 |
109
|
adantl |
|- ( ( { A , B } e. Fin /\ ( # ` { A , B } ) <_ 2 ) -> ( # ` { A , B } ) =/= 3 ) |
111 |
95 110
|
mp1i |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , B } ) =/= 3 ) |
112 |
|
tpeq3 |
|- ( C = A -> { A , B , C } = { A , B , A } ) |
113 |
|
tpidm13 |
|- { A , B , A } = { A , B } |
114 |
112 113
|
eqtr2di |
|- ( C = A -> { A , B } = { A , B , C } ) |
115 |
114
|
fveq2d |
|- ( C = A -> ( # ` { A , B } ) = ( # ` { A , B , C } ) ) |
116 |
115
|
neeq1d |
|- ( C = A -> ( ( # ` { A , B } ) =/= 3 <-> ( # ` { A , B , C } ) =/= 3 ) ) |
117 |
111 116
|
syl5ib |
|- ( C = A -> ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , B , C } ) =/= 3 ) ) |
118 |
9 117
|
sylbi |
|- ( -. C =/= A -> ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , B , C } ) =/= 3 ) ) |
119 |
69 94 118
|
3jaoi |
|- ( ( -. A =/= B \/ -. B =/= C \/ -. C =/= A ) -> ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , B , C } ) =/= 3 ) ) |
120 |
21 119
|
sylbi |
|- ( -. ( A =/= B /\ B =/= C /\ C =/= A ) -> ( ( A e. U /\ B e. V /\ C e. W ) -> ( # ` { A , B , C } ) =/= 3 ) ) |
121 |
120
|
com12 |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( -. ( A =/= B /\ B =/= C /\ C =/= A ) -> ( # ` { A , B , C } ) =/= 3 ) ) |
122 |
121
|
necon4bd |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( ( # ` { A , B , C } ) = 3 -> ( A =/= B /\ B =/= C /\ C =/= A ) ) ) |
123 |
40 122
|
impbid |
|- ( ( A e. U /\ B e. V /\ C e. W ) -> ( ( A =/= B /\ B =/= C /\ C =/= A ) <-> ( # ` { A , B , C } ) = 3 ) ) |