Step |
Hyp |
Ref |
Expression |
1 |
|
ficardun |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( card ` ( A u. B ) ) = ( ( card ` A ) +o ( card ` B ) ) ) |
2 |
1
|
fveq2d |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( A u. B ) ) ) = ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` B ) ) ) ) |
3 |
|
unfi |
|- ( ( A e. Fin /\ B e. Fin ) -> ( A u. B ) e. Fin ) |
4 |
|
eqid |
|- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
5 |
4
|
hashgval |
|- ( ( A u. B ) e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( A u. B ) ) ) = ( # ` ( A u. B ) ) ) |
6 |
3 5
|
syl |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( A u. B ) ) ) = ( # ` ( A u. B ) ) ) |
7 |
6
|
3adant3 |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` ( A u. B ) ) ) = ( # ` ( A u. B ) ) ) |
8 |
|
ficardom |
|- ( A e. Fin -> ( card ` A ) e. _om ) |
9 |
|
ficardom |
|- ( B e. Fin -> ( card ` B ) e. _om ) |
10 |
4
|
hashgadd |
|- ( ( ( card ` A ) e. _om /\ ( card ` B ) e. _om ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) ) |
11 |
8 9 10
|
syl2an |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) ) |
12 |
4
|
hashgval |
|- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
13 |
4
|
hashgval |
|- ( B e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) = ( # ` B ) ) |
14 |
12 13
|
oveqan12d |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) + ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` B ) ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
15 |
11 14
|
eqtrd |
|- ( ( A e. Fin /\ B e. Fin ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
16 |
15
|
3adant3 |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( ( card ` A ) +o ( card ` B ) ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
17 |
2 7 16
|
3eqtr3d |
|- ( ( A e. Fin /\ B e. Fin /\ ( A i^i B ) = (/) ) -> ( # ` ( A u. B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |