Metamath Proof Explorer


Theorem hashuni

Description: The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015)

Ref Expression
Hypotheses hashuni.1
|- ( ph -> A e. Fin )
hashuni.2
|- ( ph -> A C_ Fin )
hashuni.3
|- ( ph -> Disj_ x e. A x )
Assertion hashuni
|- ( ph -> ( # ` U. A ) = sum_ x e. A ( # ` x ) )

Proof

Step Hyp Ref Expression
1 hashuni.1
 |-  ( ph -> A e. Fin )
2 hashuni.2
 |-  ( ph -> A C_ Fin )
3 hashuni.3
 |-  ( ph -> Disj_ x e. A x )
4 uniiun
 |-  U. A = U_ x e. A x
5 4 fveq2i
 |-  ( # ` U. A ) = ( # ` U_ x e. A x )
6 2 sselda
 |-  ( ( ph /\ x e. A ) -> x e. Fin )
7 1 6 3 hashiun
 |-  ( ph -> ( # ` U_ x e. A x ) = sum_ x e. A ( # ` x ) )
8 5 7 eqtrid
 |-  ( ph -> ( # ` U. A ) = sum_ x e. A ( # ` x ) )