Description: The cardinality of a disjoint union. (Contributed by Mario Carneiro, 24-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hashuni.1 | |- ( ph -> A e. Fin ) |
|
hashuni.2 | |- ( ph -> A C_ Fin ) |
||
hashuni.3 | |- ( ph -> Disj_ x e. A x ) |
||
Assertion | hashuni | |- ( ph -> ( # ` U. A ) = sum_ x e. A ( # ` x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashuni.1 | |- ( ph -> A e. Fin ) |
|
2 | hashuni.2 | |- ( ph -> A C_ Fin ) |
|
3 | hashuni.3 | |- ( ph -> Disj_ x e. A x ) |
|
4 | uniiun | |- U. A = U_ x e. A x |
|
5 | 4 | fveq2i | |- ( # ` U. A ) = ( # ` U_ x e. A x ) |
6 | 2 | sselda | |- ( ( ph /\ x e. A ) -> x e. Fin ) |
7 | 1 6 3 | hashiun | |- ( ph -> ( # ` U_ x e. A x ) = sum_ x e. A ( # ` x ) ) |
8 | 5 7 | eqtrid | |- ( ph -> ( # ` U. A ) = sum_ x e. A ( # ` x ) ) |