| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0re |  |-  ( N e. NN0 -> N e. RR ) | 
						
							| 2 | 1 | rexrd |  |-  ( N e. NN0 -> N e. RR* ) | 
						
							| 3 |  | hashxrcl |  |-  ( A e. V -> ( # ` A ) e. RR* ) | 
						
							| 4 |  | 1re |  |-  1 e. RR | 
						
							| 5 |  | xltadd1 |  |-  ( ( N e. RR* /\ ( # ` A ) e. RR* /\ 1 e. RR ) -> ( N < ( # ` A ) <-> ( N +e 1 ) < ( ( # ` A ) +e 1 ) ) ) | 
						
							| 6 | 4 5 | mp3an3 |  |-  ( ( N e. RR* /\ ( # ` A ) e. RR* ) -> ( N < ( # ` A ) <-> ( N +e 1 ) < ( ( # ` A ) +e 1 ) ) ) | 
						
							| 7 | 2 3 6 | syl2an |  |-  ( ( N e. NN0 /\ A e. V ) -> ( N < ( # ` A ) <-> ( N +e 1 ) < ( ( # ` A ) +e 1 ) ) ) | 
						
							| 8 | 7 | ancoms |  |-  ( ( A e. V /\ N e. NN0 ) -> ( N < ( # ` A ) <-> ( N +e 1 ) < ( ( # ` A ) +e 1 ) ) ) | 
						
							| 9 |  | rexadd |  |-  ( ( N e. RR /\ 1 e. RR ) -> ( N +e 1 ) = ( N + 1 ) ) | 
						
							| 10 | 4 9 | mpan2 |  |-  ( N e. RR -> ( N +e 1 ) = ( N + 1 ) ) | 
						
							| 11 | 1 10 | syl |  |-  ( N e. NN0 -> ( N +e 1 ) = ( N + 1 ) ) | 
						
							| 12 | 11 | adantl |  |-  ( ( A e. V /\ N e. NN0 ) -> ( N +e 1 ) = ( N + 1 ) ) | 
						
							| 13 | 12 | breq1d |  |-  ( ( A e. V /\ N e. NN0 ) -> ( ( N +e 1 ) < ( ( # ` A ) +e 1 ) <-> ( N + 1 ) < ( ( # ` A ) +e 1 ) ) ) | 
						
							| 14 | 8 13 | bitrd |  |-  ( ( A e. V /\ N e. NN0 ) -> ( N < ( # ` A ) <-> ( N + 1 ) < ( ( # ` A ) +e 1 ) ) ) | 
						
							| 15 | 14 | 3adant2 |  |-  ( ( A e. V /\ B e. W /\ N e. NN0 ) -> ( N < ( # ` A ) <-> ( N + 1 ) < ( ( # ` A ) +e 1 ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( A e. V /\ B e. W /\ N e. NN0 ) /\ -. B e. A ) -> ( N < ( # ` A ) <-> ( N + 1 ) < ( ( # ` A ) +e 1 ) ) ) | 
						
							| 17 |  | hashunsngx |  |-  ( ( A e. V /\ B e. W ) -> ( -. B e. A -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e 1 ) ) ) | 
						
							| 18 | 17 | 3impia |  |-  ( ( A e. V /\ B e. W /\ -. B e. A ) -> ( # ` ( A u. { B } ) ) = ( ( # ` A ) +e 1 ) ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( A e. V /\ B e. W /\ -. B e. A ) -> ( ( # ` A ) +e 1 ) = ( # ` ( A u. { B } ) ) ) | 
						
							| 20 | 19 | 3expa |  |-  ( ( ( A e. V /\ B e. W ) /\ -. B e. A ) -> ( ( # ` A ) +e 1 ) = ( # ` ( A u. { B } ) ) ) | 
						
							| 21 | 20 | 3adantl3 |  |-  ( ( ( A e. V /\ B e. W /\ N e. NN0 ) /\ -. B e. A ) -> ( ( # ` A ) +e 1 ) = ( # ` ( A u. { B } ) ) ) | 
						
							| 22 | 21 | breq2d |  |-  ( ( ( A e. V /\ B e. W /\ N e. NN0 ) /\ -. B e. A ) -> ( ( N + 1 ) < ( ( # ` A ) +e 1 ) <-> ( N + 1 ) < ( # ` ( A u. { B } ) ) ) ) | 
						
							| 23 | 16 22 | bitrd |  |-  ( ( ( A e. V /\ B e. W /\ N e. NN0 ) /\ -. B e. A ) -> ( N < ( # ` A ) <-> ( N + 1 ) < ( # ` ( A u. { B } ) ) ) ) |