| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashnn0pnf |
|- ( M e. V -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |
| 2 |
|
elnn0 |
|- ( ( # ` M ) e. NN0 <-> ( ( # ` M ) e. NN \/ ( # ` M ) = 0 ) ) |
| 3 |
|
exmidne |
|- ( ( # ` M ) = 1 \/ ( # ` M ) =/= 1 ) |
| 4 |
|
nngt1ne1 |
|- ( ( # ` M ) e. NN -> ( 1 < ( # ` M ) <-> ( # ` M ) =/= 1 ) ) |
| 5 |
4
|
orbi2d |
|- ( ( # ` M ) e. NN -> ( ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) <-> ( ( # ` M ) = 1 \/ ( # ` M ) =/= 1 ) ) ) |
| 6 |
3 5
|
mpbiri |
|- ( ( # ` M ) e. NN -> ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 7 |
6
|
olcd |
|- ( ( # ` M ) e. NN -> ( ( # ` M ) = 0 \/ ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) ) |
| 8 |
|
3orass |
|- ( ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) <-> ( ( # ` M ) = 0 \/ ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) ) |
| 9 |
7 8
|
sylibr |
|- ( ( # ` M ) e. NN -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 10 |
|
3mix1 |
|- ( ( # ` M ) = 0 -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 11 |
9 10
|
jaoi |
|- ( ( ( # ` M ) e. NN \/ ( # ` M ) = 0 ) -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 12 |
2 11
|
sylbi |
|- ( ( # ` M ) e. NN0 -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 13 |
|
1re |
|- 1 e. RR |
| 14 |
|
ltpnf |
|- ( 1 e. RR -> 1 < +oo ) |
| 15 |
13 14
|
ax-mp |
|- 1 < +oo |
| 16 |
|
breq2 |
|- ( ( # ` M ) = +oo -> ( 1 < ( # ` M ) <-> 1 < +oo ) ) |
| 17 |
15 16
|
mpbiri |
|- ( ( # ` M ) = +oo -> 1 < ( # ` M ) ) |
| 18 |
17
|
3mix3d |
|- ( ( # ` M ) = +oo -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 19 |
12 18
|
jaoi |
|- ( ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |
| 20 |
1 19
|
syl |
|- ( M e. V -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) |