Description: A set of finite size is a finite set. (Contributed by Alexander van der Vekens, 8-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashvnfin | |- ( ( S e. V /\ N e. NN0 ) -> ( ( # ` S ) = N -> S e. Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1a | |- ( N e. NN0 -> ( ( # ` S ) = N -> ( # ` S ) e. NN0 ) ) |
|
| 2 | 1 | adantl | |- ( ( S e. V /\ N e. NN0 ) -> ( ( # ` S ) = N -> ( # ` S ) e. NN0 ) ) |
| 3 | hashclb | |- ( S e. V -> ( S e. Fin <-> ( # ` S ) e. NN0 ) ) |
|
| 4 | 3 | bicomd | |- ( S e. V -> ( ( # ` S ) e. NN0 <-> S e. Fin ) ) |
| 5 | 4 | adantr | |- ( ( S e. V /\ N e. NN0 ) -> ( ( # ` S ) e. NN0 <-> S e. Fin ) ) |
| 6 | 2 5 | sylibd | |- ( ( S e. V /\ N e. NN0 ) -> ( ( # ` S ) = N -> S e. Fin ) ) |