Metamath Proof Explorer


Theorem hashvnfin

Description: A set of finite size is a finite set. (Contributed by Alexander van der Vekens, 8-Dec-2017)

Ref Expression
Assertion hashvnfin
|- ( ( S e. V /\ N e. NN0 ) -> ( ( # ` S ) = N -> S e. Fin ) )

Proof

Step Hyp Ref Expression
1 eleq1a
 |-  ( N e. NN0 -> ( ( # ` S ) = N -> ( # ` S ) e. NN0 ) )
2 1 adantl
 |-  ( ( S e. V /\ N e. NN0 ) -> ( ( # ` S ) = N -> ( # ` S ) e. NN0 ) )
3 hashclb
 |-  ( S e. V -> ( S e. Fin <-> ( # ` S ) e. NN0 ) )
4 3 bicomd
 |-  ( S e. V -> ( ( # ` S ) e. NN0 <-> S e. Fin ) )
5 4 adantr
 |-  ( ( S e. V /\ N e. NN0 ) -> ( ( # ` S ) e. NN0 <-> S e. Fin ) )
6 2 5 sylibd
 |-  ( ( S e. V /\ N e. NN0 ) -> ( ( # ` S ) = N -> S e. Fin ) )