Metamath Proof Explorer


Theorem hashxnn0

Description: The value of the hash function for a set is an extended nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017) (Revised by AV, 10-Dec-2020)

Ref Expression
Assertion hashxnn0
|- ( M e. V -> ( # ` M ) e. NN0* )

Proof

Step Hyp Ref Expression
1 hashfxnn0
 |-  # : _V --> NN0*
2 1 a1i
 |-  ( M e. V -> # : _V --> NN0* )
3 elex
 |-  ( M e. V -> M e. _V )
4 2 3 ffvelrnd
 |-  ( M e. V -> ( # ` M ) e. NN0* )