| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpeq2 |  |-  ( B = if ( B e. Fin , B , (/) ) -> ( A X. B ) = ( A X. if ( B e. Fin , B , (/) ) ) ) | 
						
							| 2 | 1 | fveq2d |  |-  ( B = if ( B e. Fin , B , (/) ) -> ( # ` ( A X. B ) ) = ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) ) | 
						
							| 3 |  | fveq2 |  |-  ( B = if ( B e. Fin , B , (/) ) -> ( # ` B ) = ( # ` if ( B e. Fin , B , (/) ) ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( B = if ( B e. Fin , B , (/) ) -> ( ( # ` A ) x. ( # ` B ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) | 
						
							| 5 | 2 4 | eqeq12d |  |-  ( B = if ( B e. Fin , B , (/) ) -> ( ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) <-> ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) ) | 
						
							| 6 | 5 | imbi2d |  |-  ( B = if ( B e. Fin , B , (/) ) -> ( ( A e. Fin -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) <-> ( A e. Fin -> ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) ) ) | 
						
							| 7 |  | 0fi |  |-  (/) e. Fin | 
						
							| 8 | 7 | elimel |  |-  if ( B e. Fin , B , (/) ) e. Fin | 
						
							| 9 | 8 | hashxplem |  |-  ( A e. Fin -> ( # ` ( A X. if ( B e. Fin , B , (/) ) ) ) = ( ( # ` A ) x. ( # ` if ( B e. Fin , B , (/) ) ) ) ) | 
						
							| 10 | 6 9 | dedth |  |-  ( B e. Fin -> ( A e. Fin -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) ) | 
						
							| 11 | 10 | impcom |  |-  ( ( A e. Fin /\ B e. Fin ) -> ( # ` ( A X. B ) ) = ( ( # ` A ) x. ( # ` B ) ) ) |