Description: Extended real closure of the # function. (Contributed by Mario Carneiro, 22-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashxrcl | |- ( A e. V -> ( # ` A ) e. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssre | |- NN0 C_ RR |
|
| 2 | ressxr | |- RR C_ RR* |
|
| 3 | 1 2 | sstri | |- NN0 C_ RR* |
| 4 | pnfxr | |- +oo e. RR* |
|
| 5 | snssi | |- ( +oo e. RR* -> { +oo } C_ RR* ) |
|
| 6 | 4 5 | ax-mp | |- { +oo } C_ RR* |
| 7 | 3 6 | unssi | |- ( NN0 u. { +oo } ) C_ RR* |
| 8 | elex | |- ( A e. V -> A e. _V ) |
|
| 9 | hashf | |- # : _V --> ( NN0 u. { +oo } ) |
|
| 10 | 9 | ffvelcdmi | |- ( A e. _V -> ( # ` A ) e. ( NN0 u. { +oo } ) ) |
| 11 | 8 10 | syl | |- ( A e. V -> ( # ` A ) e. ( NN0 u. { +oo } ) ) |
| 12 | 7 11 | sselid | |- ( A e. V -> ( # ` A ) e. RR* ) |