| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hausflf.x |  |-  X = U. J | 
						
							| 2 |  | n0 |  |-  ( ( ( J fLimf L ) ` F ) =/= (/) <-> E. x x e. ( ( J fLimf L ) ` F ) ) | 
						
							| 3 | 2 | biimpi |  |-  ( ( ( J fLimf L ) ` F ) =/= (/) -> E. x x e. ( ( J fLimf L ) ` F ) ) | 
						
							| 4 | 1 | hausflf |  |-  ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) -> E* x x e. ( ( J fLimf L ) ` F ) ) | 
						
							| 5 |  | euen1b |  |-  ( ( ( J fLimf L ) ` F ) ~~ 1o <-> E! x x e. ( ( J fLimf L ) ` F ) ) | 
						
							| 6 |  | df-eu |  |-  ( E! x x e. ( ( J fLimf L ) ` F ) <-> ( E. x x e. ( ( J fLimf L ) ` F ) /\ E* x x e. ( ( J fLimf L ) ` F ) ) ) | 
						
							| 7 | 5 6 | sylbbr |  |-  ( ( E. x x e. ( ( J fLimf L ) ` F ) /\ E* x x e. ( ( J fLimf L ) ` F ) ) -> ( ( J fLimf L ) ` F ) ~~ 1o ) | 
						
							| 8 | 3 4 7 | syl2anr |  |-  ( ( ( J e. Haus /\ L e. ( Fil ` Y ) /\ F : Y --> X ) /\ ( ( J fLimf L ) ` F ) =/= (/) ) -> ( ( J fLimf L ) ` F ) ~~ 1o ) |